Quiz 6 - Wednesday, August 4

Name: Solution Key

1. (1 points) What is $\frac{d}{d x}\left(\tan ^{-1}(x)\right)$?

Solution: $\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$.
2. (3 points) If $\sqrt{x}+\sqrt{y}=2$, use implicit differentiation to find $\frac{d y}{d x}$.

Solution: Differentiating implicitly, we obtain the equation

$$
\frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}} \frac{d y}{d x}=0
$$

Separating out the $\frac{d y}{d x}$ terms, we have

$$
\frac{1}{2 \sqrt{y}} \frac{d y}{d x}=-\frac{1}{2 \sqrt{x}} \Rightarrow \frac{d y}{d x}=-\frac{2 \sqrt{y}}{2 \sqrt{x}}=-\sqrt{\frac{y}{x}} .
$$

3. (3 points) Let $f(x)=x^{\left(x^{2}\right)}$. Compute $f^{\prime}(x)$ using logarithmic differentiation.

Solution: We take logarithms of both sides to get

$$
\ln (f(x))=\ln \left(x^{\left(x^{2}\right)}\right)=x^{2} \ln x
$$

Differentiating with respect to x, we have

$$
\frac{f^{\prime}(x)}{f(x)}=2 x \ln x+x^{2} \frac{1}{x}=2 x \ln x+x
$$

so therefore

$$
f^{\prime}(x)=f(x)(2 x \ln x+x)=x^{\left(x^{2}\right)}(2 x \ln x+x)
$$

4. (3 points) Suppose that a cube has a side length s that varies with time. At one point in time, the side is 3 cm long and is decreasing at a rate of $\frac{1}{6} \mathrm{~cm} / \mathrm{s}$. How fast is the surface area of the cube changing? (Make sure to include units in your final answer.)

Solution: Since the box has 6 square sides, each with side length s, the total surface area is

$$
A=6 s^{2}
$$

Differentiating with respect to the time variable t, we have

$$
\frac{d A}{d t}=6(2 s) \frac{d s}{d t}=12 s \frac{d s}{d t}
$$

When $s=3 \mathrm{~cm}$ and $\frac{d s}{d t}=-\frac{1}{6} \mathrm{~cm} / \mathrm{s}$ (since the side length is decreasing), then

$$
\frac{d A}{d t}=(12)(3 \mathrm{~cm})\left(-\frac{1}{6} \frac{\mathrm{~cm}}{\mathrm{~s}}\right)=-6 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}
$$

