Quiz 5 Solutions- Wednesday, July 28

Let $f(x)=2 x^{3}-3 x^{2}-12 x+1$, defined on $(-\infty, \infty)$.

1. (2 points) Find the critical points of f.

$$
f^{\prime}(x)=6 x^{2}-6 x-12=6\left(x^{2}-x-2\right)=6(x-2)(x+1) .
$$

To find the critical points, we let $f^{\prime}(x)=0$, so we obtain that $x=2$ and $x=-1$ are the critical points of f.
2. (2 points) Find the intervals on which f increases and decreases.

We have to study the sign of f^{\prime} on three intervals:

- On $(-\infty,-1), f^{\prime}$ is positive, so f is increasing.
- On $(-1,2), f^{\prime}$ is negative, so f is decreaing.
- On $(2, \infty), f^{\prime}$ is positive, so f is increasing.

3. (2 points) Find the x values where the local minimum and maximum values of f occur.

Using the First Derivative Test, we can see that -1 is a local maximum, and 2 is a local minimum.
Alternatively, we can use the Second Derivative Test, for the critical points of f. We have that $f^{\prime \prime}(x)=6(2 x-1)$. Now, $f^{\prime \prime}(-1)<0$, so -1 is a local maximum, and $f^{\prime \prime}(2)>0$, so 2 is a local minimum.
4. (3 points) Find the intervals on which f is concave down and concave up. Find the inflection points of f.

We let $f^{\prime \prime}(x)=6(2 x-1)=0$, and we get that $x=\frac{1}{2}$ is a point where the sign of $f^{\prime \prime}$ might change. We get in fact that:

- On $\left(-\infty, \frac{1}{2}\right), f^{\prime \prime}$ is negative, so f is concave down.
- On $\left(\frac{1}{2}, \infty\right), f^{\prime \prime}$ is positive, so f is concave up.
- $x=\frac{1}{2}$ is an inflection point for f.

5. (1 point) Does f have an absolute maximum or minimum? Justify.
$\lim _{x \rightarrow \infty} f(x)=\infty$ so f does not have an absolute maximum.
$\lim _{x \rightarrow-\infty} f(x)=-\infty$ so f does not have an absolute minimum.
