Quiz 4 - Monday, July 19

Name: \qquad
Solution Key

1. (4 points) Compute the following. You do not need to justify your answers.
(a) $\frac{d}{d x}(5)=$ \qquad (b) $\frac{d}{d z}(\cos z)=$ \qquad
(c) $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=$ \qquad (d) $\frac{d}{d x}\left(2 x^{4}-3 x^{-3}\right)=8 x^{3}+9 x^{-4}$
2. (3 points) Let $f(x)=\frac{e^{x}}{x^{2}}$. Compute $f^{\prime}(x)$.

Solution: We write $f(x)=e^{x} x^{-2}$ and use the product rule:

$$
f^{\prime}(x)=\left(e^{x}\right)^{\prime}\left(x^{-2}\right)+\left(e^{x}\right)\left(x^{-2}\right)^{\prime}=e^{x} x^{-2}+e^{x}\left(-2 x^{-3}\right)=\frac{e^{x}(x-2)}{x^{3}} .
$$

Solution: We use the quotient rule:

$$
f^{\prime}(x)=\frac{\left(e^{x}\right)^{\prime}\left(x^{2}\right)-\left(e^{x}\right)\left(x^{2}\right)^{\prime}}{\left(x^{2}\right)^{2}}=\frac{e^{x} x^{2}-2 e^{x} x}{x^{4}}=\frac{e^{x}(x-2)}{x^{3}} .
$$

3. (3 points) Let $w=\sin \left(z^{2}\right)$. Compute $\frac{d w}{d z}$.

Solution: We use the chain rule, with $w=\sin u$ and $u=z^{2}$:

$$
\frac{d w}{d z}=\frac{d w}{d u} \cdot \frac{d u}{d z}=(\cos u)(2 z)=\left(\cos \left(z^{2}\right)\right)(2 z)=2 z \cos \left(z^{2}\right) .
$$

