Quiz 3 - Solutions

1. (2 points) Let $f(x)$ be a function. Write down a formula which defines its derivative at the number a.

Solution.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \quad \text { or } \quad f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

2. (2 points) Let $f(x)=2 x$. Use the definition in the previous problem to compute $f^{\prime}(1)$ (the derivative of $f(x)$ at the number 1). Show your calculations.

Solution.

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{2(1+h)-2}{h}=\lim _{h \rightarrow 0} \frac{2 h}{h}=\lim _{h \rightarrow 0} 2=2 .
$$

or

$$
f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{2 x-2}{x-1}=\lim _{x \rightarrow 1} \frac{2(x-1)}{x-1}=\lim _{x \rightarrow 1} 2=2 .
$$

3. (2 points) Use your answer in the previous problem to find the equation of the tangent line to $f(x)$ at the point $(1,2)$.

Solution. From previous problem we know the slope of the tangent line at the point $(1,2)$ is 2 . By the point-slope formula, the equation of the line is

$$
y-2=2(x-1)
$$

which simplifies to

$$
y=2 x .
$$

4. (4 points) For the function $f(x)=2 x$, compute $f(x)$ and $f^{\prime \prime}(x)$.

Solution.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x
\end{aligned}
$$

and

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{2(x+h)-2 x}{h}=\lim _{h \rightarrow 0} \frac{2 h}{h}=\lim _{h \rightarrow 0} 2=2 .
$$

