## Quiz 2 - Wednesday, July 7

Name: $\qquad$

1. (4 points) Let $f(x)=\left\{\begin{array}{ll}\frac{-x^{2}-x}{x+1}, & x \leq 0 \\ \frac{2 x-3}{2(x-1)}, & x>0\end{array}\right\}$. A graph of $f$ over $[-2,5]$ is given below.


Describe the types and locations of the discontinuities of $f$ and the asymptotes of $f$. You do not need to justify your answers.

- $f$ has a $\qquad$ discontinuity at $x=$ $\qquad$
- $f$ has a $\qquad$ discontinuity at $x=$ $\qquad$
- $f$ has a $\qquad$ discontinuity at $x=$ $\qquad$
- The graph has vertical asymptote(s) at $\qquad$ .
- The graph has horizontal asymptote(s) at $\qquad$ .

2. (2 points) Evaluate $\lim _{x \rightarrow 3} \frac{\frac{1}{3}-\frac{1}{x}}{x-3}$, if it exists.
3. (2 points) Evaluate $\lim _{x \rightarrow \infty} \sqrt{9 x^{2}+x}-3 x$, if it exists.
4. (2 points) Use the Intermediate Value Theorem to show that the equation $2^{x}=2-x$ has a solution $c$ in the interval $(0,1)$.
