Quiz 2 - Wednesday, July 7

Name:
Solution Key

1. (4 points) Let $f(x)=\left\{\begin{array}{cc}\frac{-x^{2}-x}{x+1}, & x \leq 0 \\ \frac{2 x-3}{2(x-1)}, & x>0\end{array}\right\}$. A graph of f over $[-2,5]$ is given below.

Describe the types and locations of the discontinuities of f and the asymptotes of f. You do not need to justify your answers.

- f has a removable discontinuity at $x=-1$
- f has an infinite discontinuity at $x=1$
- f has a jump discontinuity at $x=\underline{0}$
- The graph has vertical asymptote(s) at \qquad $x=1$
- The graph has horizontal asymptote(s) at \qquad $y=1$

2. (2 points) Evaluate $\lim _{x \rightarrow 3} \frac{\frac{1}{3}-\frac{1}{x}}{x-3}$, if it exists.

Solution: Since substituting in $x=3$ gives the indeterminate expression $\frac{0}{0}$, we must instead rewrite the function:

$$
\lim _{x \rightarrow 3} \frac{\frac{1}{3}-\frac{1}{x}}{x-3}=\lim _{x \rightarrow 3} \frac{\frac{x-3}{3 x}}{x-3}=\lim _{x \rightarrow 3} \frac{1}{3 x}=\frac{1}{9}
$$

3. (2 points) Evaluate $\lim _{x \rightarrow \infty} \sqrt{9 x^{2}+x}-3 x$, if it exists.

Solution: Taking the limit of each term as $x \rightarrow \infty$ yields $\infty-\infty$, so we must rewrite the function. We use the conjugate radical:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \sqrt{9 x^{2}+x}-3 x & =\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+x}-3 x\right) \cdot \frac{\sqrt{9 x^{2}+x}+3 x}{\sqrt{9 x^{2}+x}+3 x} \\
& =\lim _{x \rightarrow \infty} \frac{\left(9 x^{2}+x\right)-9 x^{2}}{\sqrt{9 x^{2}+x}+3 x} \\
& =\lim _{x \rightarrow \infty} \frac{x}{\sqrt{9 x^{2}+x}+3 x} \cdot \frac{1 / x}{1 / x} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{9+\frac{1}{x}}+3}=\frac{1}{6}
\end{aligned}
$$

4. (2 points) Use the Intermediate Value Theorem to show that the equation $2^{x}=2-x$ has a solution c in the interval $(0,1)$.

Solution: Let $f(x)=2^{x}+x-2$, so that $f(c)=0$ exactly when c is a solution to the equation. We also note f is continuous at all real x. Since

$$
f(0)=1+0-2=-1<0 \quad \text { and } \quad f(1)=2+1-2=1>0,
$$

the Intermediate Value theorem states that there is some value c in $(0,1)$ so that $f(c)=0$. Thus, the equation has a solution c in $(0,1)$.

