Quiz 2 — Wednesday, July 7

Solution Key Name: 1. (4 *points*) Let $f(x) = \begin{cases} \frac{-x^2 - x}{x+1}, & x \le 0\\ \frac{2x-3}{2(x-1)}, & x > 0 \end{cases}$. A graph of *f* over [-2, 5] is given below. y = f(x)3 -2 -1 -→ X 3 $^{-2}$ $^{-1}$ 1 2 4 5 -1 -

Describe the types and locations of the discontinuities of f and the asymptotes of f. You do not need to justify your answers.

•	f has a	removable	discontinuity at $x =$	1	
•	f has an	infinite	discontinuity at $x =$	1	
•	f has a	jump	discontinuity at $x =$	0	
• The graph has vertical asymptote(s) at $x = 1$					
•	The grap	h has horizontal	asymptote(s) at	y = 1	

2. (2 *points*) Evaluate $\lim_{x \to 3} \frac{\frac{1}{3} - \frac{1}{x}}{x - 3}$, if it exists.

Solution: Since substituting in x = 3 gives the indeterminate expression $\frac{0}{0}$, we must instead rewrite the function:

$$\lim_{x \to 3} \frac{\frac{1}{3} - \frac{1}{x}}{x - 3} = \lim_{x \to 3} \frac{\frac{x - 3}{3x}}{x - 3} = \lim_{x \to 3} \frac{1}{3x} = \boxed{\frac{1}{9}}$$

3. (2 *points*) Evaluate $\lim_{x\to\infty} \sqrt{9x^2 + x} - 3x$, if it exists.

Solution: Taking the limit of each term as $x \to \infty$ yields $\infty - \infty$, so we must rewrite the function. We use the conjugate radical:

$$\lim_{x \to \infty} \sqrt{9x^2 + x} - 3x = \lim_{x \to \infty} (\sqrt{9x^2 + x} - 3x) \cdot \frac{\sqrt{9x^2 + x} + 3x}{\sqrt{9x^2 + x} + 3x}$$
$$= \lim_{x \to \infty} \frac{(9x^2 + x) - 9x^2}{\sqrt{9x^2 + x} + 3x}$$
$$= \lim_{x \to \infty} \frac{x}{\sqrt{9x^2 + x} + 3x} \cdot \frac{1/x}{1/x}$$
$$= \lim_{x \to \infty} \frac{1}{\sqrt{9 + \frac{1}{x}} + 3} = \boxed{\frac{1}{6}}$$

4. (2 *points*) Use the Intermediate Value Theorem to show that the equation $2^x = 2 - x$ has a solution *c* in the interval (0, 1).

Solution: Let $f(x) = 2^x + x - 2$, so that f(c) = 0 exactly when *c* is a solution to the equation. We also note *f* is continuous at all real *x*. Since

$$f(0) = 1 + 0 - 2 = -1 < 0$$
 and $f(1) = 2 + 1 - 2 = 1 > 0$,

the Intermediate Value theorem states that there is some value *c* in (0, 1) so that f(c) = 0. Thus, the equation has a solution *c* in (0, 1).