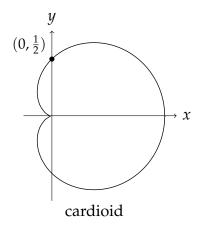
Math 19: Calculus

Problems: Extrema, Implicit Differentiation, Related Rates

1. A curve called a *cardioid* is described by the equation

$$x^2 + y^2 = (2x^2 + 2y^2 - x)^2.$$

Find the tangent line to the curve at the point $(0, \frac{1}{2})$.



Solution: We differentiate the equation implicitly, with respect to *x*:

$$2x + 2y\frac{dy}{dx} = 2(2x^2 + 2y^2 - x)\left(4x + 4y\frac{dy}{dx} - 1\right)$$

Cancelling the factors of 2 on both sides, and separating the $\frac{dy}{dx}$ terms from the other terms, we have

$$y\frac{dy}{dx} - 4y(2x^2 + 2y^2 - x)\frac{dy}{dx} = (2x^2 + 2y^2 - x)(4x - 1) - x$$

Isolating $\frac{dy}{dx}$ gives

$$\frac{dy}{dx} = \frac{(2x^2 + 2y^2 - x)(4x - 1) - x}{y - 4y(2x^2 + 2y^2 - x)}.$$

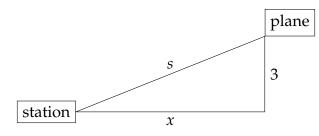
We now evaluate $\frac{dy}{dx}$ at $(0, \frac{1}{2})$ to get the slope of the tangent line. At this point, $2x^2 + 2y^2 - x = 0 + 2(\frac{1}{2})^2 - 0 = \frac{1}{2}$, so

$$\frac{dy}{dx} = \frac{\left(\frac{1}{2}\right)(-1) - 0}{\frac{1}{2} - 4\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)} = \frac{-\frac{1}{2}}{-\frac{1}{2}} = 1.$$

Then the tangent line is $y - \frac{1}{2} = 1(x - 0)$, which simplifies to $y = x + \frac{1}{2}$.

2. A plane flying at an altitude of 3 miles will pass directly over a radar station. The radar station measures that, at time T, the distance between the plane and the station is 5 miles, and the plane is approaching the station at 200 miles per hour. What is the speed of the plane relative to the ground?

Solution: We make a diagram of the distances involved and label the quantities:



Hence, *s* is the distance from the station to the plane, and *x* is the distance to the plane along the ground. We wish to find $\frac{dx}{dt}$. From the diagram,

$$s^2 = x^2 + 9,$$

so differentiating with respect to *t* gives

$$2s\frac{ds}{dt} = 2x\frac{dx}{dt} \Rightarrow \frac{dx}{dt} = \frac{s}{x}\frac{ds}{dt}.$$

At this particular time, s = 5, and $\frac{ds}{dt} = -200$. We compute that $x = \sqrt{s^2 - 9} = \sqrt{25 - 9} = 4$, so $\frac{dx}{dt} = \frac{5}{4}(-200) = -250$ miles per hour. Hence, the speed of the plane is 250 mph.

- 3. Let $f(x) = \frac{3x+4}{x^2+1}$, defined on $(-\infty, \infty)$.
- (a) Find the critical numbers of f(x).
- (b) Which critical numbers correspond to local maxima? Local minima? Justify your answer using the First or Second Derivative Tests.
- (c) What are the absolute maximum and minimum values of *f*, if they exist? Explain.

Solution:

(a) We compute the derivative of f(x):

$$f'(x) = \frac{(x^2+1)(3) - (3x+4)(2x)}{(x^2+1)^2} = \frac{3 - 8x - 3x^2}{(x^2+1)^2}.$$

This is defined for all real x, so we have no critical numbers from f'(x) not existing. f'(x) = 0 exactly when $3 - 8x - 3x^2 = 0$. To find the roots of this quadratic polynomial, we apply the quadratic formula:

$$x = \frac{8 \pm \sqrt{64 - 4(-3)(3)}}{-6} = \frac{-8 \pm \sqrt{100}}{6} = \frac{-4 \pm 5}{3} = -3, \frac{1}{3}.$$

Therefore, x = -3 and $x = \frac{1}{3}$ are the critical numbers of *f*.

(b) We first characterize these critical points via the First Derivative Test. For x < -3, f'(x) has the same sign. Since

$$f'(-4) = \frac{3 - 8(-4) - 3(-4)^2}{((-4)^2 + 1)^2} = \frac{-13}{17^2} < 0,$$

f'(x) is negative for x < -3. Similarly, $f'(0) = \frac{3}{1^2} = 3 > 0$, so f'(x) is positive between -3 and $\frac{1}{3}$. Finally, $f'(1) = \frac{3-8-3}{2^2} = -2 < 0$, so f'(x) is negative for $x > \frac{1}{3}$. Since f'(x) changes from - to + at x = -3, f has a local minimum there. Since f'(x)changes from + to - at $x = \frac{1}{3}$, f has a local maximum there. Alternately, we could try the Second Derivative Test. Writing $f'(x) = (3 - 8x - 3x^2)(x^2 + 1)^{-2}$, we compute

$$f''(x) = (-8 - 6x)(x^2 + 1)^{-2} + (3 - 8x - 3x^2)(-2)(2x)(x^2 + 1)^{-3}$$

= $\frac{(-8 - 6x)(x^2 + 1) - 4x(3 - 8x - 3x^2)}{(x^2 + 1)^3} = \frac{2(3x^3 + 12x^2 - 9x - 4)}{(x^2 + 1)^3}$

Since $(x^2 + 1)^3 > 0$, the sign of f''(x) is the same as the sign of $g(x) = 3x^3 + 12x^2 - 9x - 4$. Then

$$g(-3) = -81 + 108 + 27 - 4 = 50 > 0$$
 and $g\left(\frac{1}{3}\right) = \frac{1}{9} + \frac{4}{3} - 3 - 4 = -\frac{50}{9} < 0$,

confirming the statements from the First Derivative Test.

(c) We first compute the values of f at the local extrema:

$$f(-3) = \frac{3(-3)+4}{(-3)^2+1} = \frac{-5}{10} = -\frac{1}{2} \text{ and } f\left(\frac{1}{3}\right) = \frac{3(\frac{1}{3})+4}{(\frac{1}{3})^2+1} = \frac{5}{\frac{10}{9}} = \frac{9}{2}$$

Next, we know that f decreases on the interval $(\frac{1}{3}, +\infty)$, so we check to see how far it decreases. Since f is a rational function where the degree of the denominator is greater than the degree of the numerator, $f(x) \to 0$ as $x \to \infty$. Hence, the values of f(x) on $(\frac{1}{3}, +\infty)$ stay between 0 and $\frac{9}{2}$.

Likewise, *f* is decreasing on $(-\infty, -3)$, so the values of *f* on that interval stay between 0 and $-\frac{1}{2}$. Consequently, the absolute minimum of *f* is $-\frac{1}{2}$, occurring at x = -3, and the absolute maximum is $\frac{9}{2}$, occurring at $x = \frac{1}{3}$.

4. If two resistors with resistances R_1 and R_2 are wired in parallel, the total equivalent resistance R is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}.$$

Suppose that at time *T*, $R_1 = 30 \ \Omega$ and is increasing at $3 \ \Omega/s$, and that $R_2 = 60 \ \Omega$ and is decreasing at $3 \ \Omega/s$.

- (a) How fast does *R* change with respect to time at time *T*?
- (b) What rate of change of R_2 would make $\frac{dR}{dt} = 0$?

$$\begin{cases} R_1 \\ R_2 \\ R_1 \\ R_2 \\ R_$$

Solution:

(a) We differentiate the equation with respect to *t* and apply the chain rule:

$$-\frac{1}{R^2}\frac{dR}{dt} = -\frac{1}{R_1^2}\frac{dR_1}{dt} - \frac{1}{R_2^2}\frac{dR_2}{dt}$$

We have that $R_1 = 30$, $\frac{dR_1}{dt} = 3$, $R_2 = 60$, and $\frac{dR_2}{dt} = -3$. To solve for $\frac{dR}{dt}$, we also compute $\frac{1}{R} = \frac{1}{30} + \frac{1}{60} = \frac{1}{20}$. Multiplying both sides of the equation by $-(20)^2$ gives

$$\frac{dR}{dt} = \frac{20^2}{30^2}(3) + \frac{20^2}{60^2}(-3) = \frac{4}{9}(3) + \frac{1}{9}(-3) = \frac{4}{3} - \frac{1}{3} = \boxed{1\frac{\Omega}{s}}$$

(b) From above, we have

$$\frac{1}{R^2} \frac{dR}{dt} = \frac{1}{R_1^2} \frac{dR_1}{dt} + \frac{1}{R_2^2} \frac{dR_2}{dt}$$

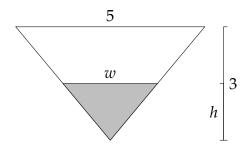
We plug in R = 20, $R_1 = 30$, $R_2 = 60$, and $\frac{dR_1}{dt} = 3$, along with the desired rate of change $\frac{dR}{dt} = 0$:

$$\frac{1}{20^2}(0) = \frac{1}{30^2}(3) + \frac{1}{60^2}\frac{dR_2}{dt}$$

Then $\frac{dR_2}{dt} = -\frac{60^2}{30^2}(3) = -(4)(3) = -12$. Hence, R_2 would have to decrease at a rate of $12 \Omega/s$ for *R* to stay constant.

5. A trough is 12 feet long and has a cross-section shaped like an isosceles triangle, with width 5 feet at the top and height 3 feet. If the trough is filled with water at a rate of $10 \text{ ft}^3/\text{min}$, how fast is the water level rising when the water is 2 feet deep?

Solution: We first make a diagram of the cross-section of the trough, labeling the quantities involved:



Here, *h* and *w* are the height and width of the water in the trough. From the problem statement, the length of the trough is l = 12. Denoting the volume as *V*, we know $\frac{dV}{dt}$ is 10, and we wish to find $\frac{dh}{dt}$. Hence, we try to relate *h* to *V*.

The water cross-section has area $A = \frac{1}{2}wh$, so the volume of water in the trough is

$$V = Al = \frac{1}{2}wh(12) = 6wh.$$

We try to rewrite *w* in terms of *V* and/or *h*. From the diagram, the water cross-section is similar to the cross-section of the entire trough, so

$$\frac{w}{h} = \frac{5}{3},$$

and $w = \frac{5}{3}h$. Hence,

$$V = 6\left(\frac{5}{3}h\right)h = 10h^2.$$

Differentiating with respect to the time variable *t*, we have

$$\frac{dV}{dt} = 20h\frac{dh}{dt}.$$

At this point in time, $\frac{dV}{dt} = 10$, and h = 2, so

$$\frac{dh}{dt} = \frac{1}{20(2)}(10) = \left\lfloor \frac{1}{4} \frac{\text{ft}}{\text{min}} \right\rfloor$$

Therefore, the water level is rising at 3 inches per minute.

- 6. Let $f(x) = x^{\sqrt{x}}$, defined for x > 0.
- (a) Compute f'(x).
- (b) Find the critical numbers of f(x). Which ones correspond to local minima? Local maxima?
- (c) Find the absolute maximum and minimum of f(x) on the interval $\left|\frac{1}{16}, 4\right|$.

Solution:

(a) We compute that $\ln(f(x)) = \ln(x^{\sqrt{x}}) = \sqrt{x} \ln x$. Differentiating,

$$\frac{f'(x)}{f(x)} = \frac{\sqrt{x}}{x} + \frac{1}{2\sqrt{x}}\ln x = \frac{2+\ln x}{2\sqrt{x}} \quad \Rightarrow \quad f'(x) = \frac{x^{\sqrt{x}}(2+\ln x)}{2\sqrt{x}}.$$

(b) f'(x) has the same domain (x > 0) as f, so we get no critical numbers from the nonexistence of f'. We then set f'(x) = 0. Since $\frac{x\sqrt{x}}{2\sqrt{x}}$ is always positive for x > 0, we have that $\ln x + 2 = 0$, so $\ln x = -2$, and $\boxed{x = e^{-2}}$ is the only critical number.

We apply the First Derivative Test to this critical point. At x = 1, on the right side of $x = e^{-2}$,

$$f'(1) = \frac{1^1}{2\sqrt{1}}(\ln(1) + 2) = 1(0+2) = 2$$

On the left side, we note that $e^{-2} \approx 0.135$, so we pick $x = \frac{1}{16} = 0.0625$. Then, noting that $\frac{1}{16} = 2^{-4}$ and that $\ln 2 \approx 0.7$,

$$f'\left(\frac{1}{16}\right) = \frac{(2^{-4})^{\sqrt{2^{-4}}}}{2\sqrt{2^{-4}}}(\ln(2^{-4}) + 2) = \frac{2^{-4\left(\frac{1}{4}\right)}}{2\left(\frac{1}{4}\right)}(2 - 4\ln 2) = 2 - 4\ln 2 \approx -0.8.$$

Hence, f'(x) changes from negative to positive at $x = e^{-2}$, so f has a local minimum there.

Alternately, we can check the sign of f''(x) at $x = e^{-2}$. We use logarithmic differentiation to compute f''(x):

$$\ln(f'(x)) = \sqrt{x} \ln x + \ln(2 + \ln x) - \ln 2 - \frac{1}{2} \ln x$$
$$\frac{f''(x)}{f'(x)} = \frac{2 + \ln x}{2\sqrt{x}} + \frac{1}{x(2 + \ln x)} - \frac{1}{2x}$$
$$f''(x) = f'(x) \left(\frac{2 + \ln x}{2\sqrt{x}} - \frac{1}{2x}\right) + \frac{x^{\sqrt{x}}}{2x\sqrt{x}}.$$

At $x = e^{-2}$, $f'(e^{-2}) = 0$, so the first term vanishes. Then

$$f''(e^{-2}) = 0 + \frac{(e^{-2})^{\sqrt{e^{-2}}}}{2e^{-3}} = \frac{1}{2}e^{3-2/e}.$$

Since $f''(e^{-2})$ is positive, *f* has a local minimum at $x = e^{-2}$.

(c) We compute the value of *f* at $x = e^{-2}$ and at the endpoints $x = \frac{1}{16}$ and x = 4:

$$f(e^{-2}) = (e^{-2})^{\sqrt{e^{-2}}} = (e^{-2})^{1/e} = e^{-2/e} \approx 0.48,$$

$$f\left(\frac{1}{16}\right) = (2^{-4})^{\sqrt{2^{-4}}} = (2^{-4})^{\frac{1}{4}} = 2^{-1} = \frac{1}{2},$$

$$f(4) = 4^{\sqrt{4}} = 4^2 = 16.$$

Hence, the minimum value is $e^{-2/e}$, at $x = e^{-2}$, and the maximum is 16, at x = 4.