Practice Problems on Limits and Continuity

1 A tank contains 10 liters of pure water. Salt water containing 20 grams of salt per liter is pumped into the tank at 2 liters per minute.

1. Express the salt concentration $C(t)$ after t minutes (in g / L).
2. What is the long-term concentration of salt, i.e., $\lim _{t \rightarrow \infty} C(t)$?

Solution:

1. The concentration is, in units of g / L,

$$
C(t)=\frac{\text { total salt }}{\text { total volume }}=\frac{20 \cdot 2 \cdot t}{10+2 \cdot t}=\frac{20 t}{5+t}
$$

2. The long-term concentration is, in units of g / L,

$$
\lim _{t \rightarrow+\infty} \frac{20 t}{5+t}=\lim _{t \rightarrow+\infty} \frac{20 t}{5+t} \cdot \frac{1 / t}{1 / t}=\lim _{t \rightarrow+\infty} \frac{20}{5 / t+1}=20
$$

2 Find the values of a and b that make $f(x)$ continuous for all real x.

$$
f(x)= \begin{cases}b e^{x}+a+1, & x \leq 0 \\ a x^{2}+b(x+3), & 0<x \leq 1 \\ a \cos (\pi x)+7 b x, & x>1\end{cases}
$$

Solution: We note that the functions are continuous on their domains, so we check that the left- and right-hand limits agree at the boundary x-values. At $x=0$,

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} b e^{x}+a+1=b+a+1 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} a x^{2}+b(x+3)=3 b,
\end{aligned}
$$

so $b+a+1=3 b$, and $a=2 b-1$. Next, at $x=1$,

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}} a x^{2}+b(x+3)=a+4 b \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} a \cos (\pi x)+7 b x=-a+7 b
\end{aligned}
$$

so $a+4 b=-a+7 b$, and $2 a=3 b$. Solving this linear system in a and b yields $b=2$ and $a=3$ as the only solution.

3 Sketch the graph of a function f with the following properties:

- $\lim _{x \rightarrow 1} f(x)=2$, but $f(1)=1$
- $\lim _{x \rightarrow 3} f(x)=+\infty$
- $\lim _{x \rightarrow 2^{+}} f(x)=-1, \lim _{x \rightarrow 2^{-}} f(x)=3$
- $\lim _{x \rightarrow+\infty} f(x)=-2$
- $\lim _{x \rightarrow-\infty} f(x)=-\infty$

Solution: Answers may vary, but here is a representative solution:

4 Show that the equation $\sqrt{x-5}=\frac{1}{x+3}$ has at least one real solution.
Solution: Let $f(x)=\sqrt{x-5}-\frac{1}{x+3}$, so that $f(x)=0$ if and only if x is a solution to the equation. Then f is defined and continuous for all $x \geq 5$. Evaluating f at 5 and at 6 , we see that

$$
f(5)=\sqrt{5-5}-\frac{1}{5+3}=-\frac{1}{8}<0 \quad \text { and } \quad f(6)=\sqrt{6-5}-\frac{1}{6+3}=\frac{8}{9}>0
$$

By the Intermediate Value Theorem, there is some c in the interval $(5,6)$ so that $f(c)=0$, so f has at least one root.
(In fact, it is possible to reduce this equation to the cubic polynomial equation $(x-$ 5) $(x+3)^{2}-1=0$, and it is unpleasant but not impossible to find its roots exactly; the only valid root of the original equation is

$$
\left.c=-\frac{1}{3}+\frac{1}{3} \sqrt[3]{\frac{1051-15 \sqrt{249}}{2}}+\frac{1}{3} \sqrt[3]{\frac{1051+15 \sqrt{249}}{2}} \approx 5.01556 \ldots\right)
$$

5 Consider the rational function

$$
f(x)=\frac{x^{5}-x^{4}-2 x^{3}}{x^{4}-3 x^{3}-x^{2}+3 x}
$$

- For what values of a does f have a removable discontinuity at a ? What is $\lim _{x \rightarrow a} f(x)$ at those a ?
- For what values of a does f have an infinite discontinuity at a ?
- What is $\lim _{x \rightarrow+\infty} f(x)$?
(Hint: Factor the numerator and the denominator.)
Solution: We factor the numerator and denominator of f to obtain

$$
f(x)=\frac{x^{3}(x+1)(x-2)}{x(x+1)(x-1)(x-3)}
$$

Away from $x=0$ and $x=-1, f(x)$ simplifies to

$$
\frac{x^{2}(x-2)}{(x-1)(x-3)}
$$

which is defined and continuous at these x-values. Thus, f has removable discontinuities at $x=0$ and at $x=-1$. From this form of f, we also compute that

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{x^{2}(x-2)}{(x-1)(x-3)}=\frac{0^{2}(-2)}{(-1)(-3)}=0 \quad \text { and } \\
& \lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} \frac{x^{2}(x-2)}{(x-1)(x-3)}=\frac{(-1)^{2}(-3)}{(-2)(-4)}=-\frac{3}{8}
\end{aligned}
$$

At $x=1$ and at $x=3$, however, the numerator of the original function is not 0 , so f has infinite singularities (and vertical asymptotes) at these x-values.

Finally, we observe that

$$
\lim _{x \rightarrow+\infty} \frac{x^{5}-x^{4}-2 x^{3}}{x^{4}-3 x^{3}-x^{2}+3 x}=\lim _{x \rightarrow+\infty} \frac{x-1-\frac{2}{x}}{1-\frac{3}{x}-\frac{1}{x^{2}}+\frac{3}{x^{3}}}=+\infty .
$$

6 Find the value of a such that

$$
\lim _{x \rightarrow-1} \frac{2 x^{2}-a x-14}{x^{2}-2 x-3}
$$

exists. What is the value of the limit?
Solution: We observe that $\lim _{x \rightarrow-1} x^{2}-2 x-3=1+2-3=0$, so in order for this limit to exist, we need the limit of the numerator as $x \rightarrow-1$ to be 0 as well. Since

$$
\lim _{x \rightarrow-1} 2 x^{2}-a x-14=2+a-14=a-12
$$

$a-12=0$, and $a=12$. Then, away from $x=-1$,

$$
\frac{2 x^{2}-12 x-14}{x^{2}-2 x-3}=\frac{2(x-7)(x+1)}{(x-3)(x+1)}=\frac{2(x-7)}{(x-3)}
$$

As $x \rightarrow 1$, we see by evaluation that the limit is $\frac{2(-8)}{(-4)}=4$.

