Math 19: Calculus

Summer 2010

Background Practice Problems - Solutions

1. Write as a single fraction:

$$
\frac{1}{x+2}+\frac{x}{x^{2}+5 x+6}
$$

Solution:

$$
\begin{aligned}
\frac{1}{x+2}+\frac{x}{x^{2}+5 x+6} & =\frac{1}{x+2}+\frac{x}{(x+2)(x+3)} \\
& =\frac{x+3}{(x+2)(x+3)}+\frac{x}{(x+2)(x+3)} \\
& =\frac{x+3+x}{(x+2)(x+3)} \\
& =\frac{2 x+3}{(x+2)(x+3)}
\end{aligned}
$$

2. Simplify $\frac{\frac{(x+2)^{2}}{x \cos x}}{\frac{(x+2) \cos x}{x^{2}}}$.

Solution:

$$
\begin{aligned}
\frac{\frac{(x+2)^{2}}{x \cos x}}{\frac{(x+2) \cos x}{x^{2}}} & =\frac{(x+2)^{2}}{x \cos x} \cdot \frac{x^{2}}{(x+2) \cos x} \\
& =\frac{x(x+2)}{\cos ^{2} x}
\end{aligned}
$$

3. Simplify $\left(4^{1 / 2}\right)\left(27^{2 / 3}\right)$.

Solution:

$$
\begin{aligned}
\left(4^{1 / 2}\right)\left(27^{2 / 3}\right) & =(2)\left(\left(27^{1 / 3}\right)^{2}\right) \\
& =2\left(3^{2}\right) \\
& =18
\end{aligned}
$$

4. Find all solutions to $x^{2}-5 x=6$.

Solution:

$$
\begin{array}{r}
x^{2}-5 x=6 \\
x^{2}-5 x-6=0 \\
(x-6)(x+1)=0
\end{array}
$$

so the solutions are $x=-1$ and $x=6$. The quadratic formula also produces these values:

$$
\begin{aligned}
x & =\frac{5 \pm \sqrt{5^{2}-4(1)(-6)}}{2(1)} \\
& =\frac{5 \pm 7}{2} \\
& =-1,6
\end{aligned}
$$

5. Find all solutions to $|2-x|=5$.

Solution:

$$
\begin{aligned}
|2-x| & =5 \\
2-x & = \pm 5 \\
-x & =3,-7 \\
x & =-3,7
\end{aligned}
$$

6. Find the equation of the line passing through the points $(-1,0)$ and $(-3,-4)$.

Solution: The slope is $\frac{0-(-4)}{-1-(-3)}=\frac{4}{2}=2$.

$$
\begin{aligned}
y-0 & =2(x-(-1)) \\
y & =2 x+2
\end{aligned}
$$

7. Find the equation of the line passing through the point $(1,1)$ with slope 5 . Solution:

$$
\begin{aligned}
y-1 & =5(x-1) \\
y & =5 x-4
\end{aligned}
$$

8. Find the y-intercepts and x-intercepts of $f(x)=x^{2}+x-2$.

Solution: The y-intercept is $f(0)=-2$. The x-intercepts are the solutions to $x^{2}+x-$ $2=0$. Since

$$
x^{2}+x-2=(x+2)(x-1)
$$

these solutions are $x=1$ and $x=-2$. (These solutions can also be found using the quadratic formula.)
9. Find the y-intercepts and x-intercepts of $f(x)=\left(3-e^{x}\right)\left(e^{x}+1\right)$.

Solution: The y-intercept is $f(0)=\left(3-e^{0}\right)\left(e^{0}+1\right)=(3-1)(1+1)=4$. The x-intercepts are the solutions to $\left(3-e^{x}\right)\left(e^{x}+1\right)=0$. The equation $3-e^{x}=0$ is equivalent to $x=\ln 3$, and $e^{x}+1$ is never equal to 0 , so the only x-intercept occurs at $x=\ln 3$.
10. If $\cos \theta=2 / 3$ for a value of θ between 0 and $\pi / 2$, find $\tan \theta$.

Solution: Since $0<\theta<\pi / 2$, we can draw a right triangle with angle θ. Let the hypotenuse of this triangle be 3 . Then the leg adjacent to θ has length 2 , and the leg opposite θ has length $\sqrt{3^{2}-2^{2}}=\sqrt{5}$. Then

$$
\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{\sqrt{5}}{2}
$$

11. We know that $\sin (\pi / 2)=1$. Find $\sin (\pi / 3), \cos (3 \pi / 4)$, and $\cot (\pi / 6)$.

Solution:

$$
\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}, \quad \cos \left(\frac{3 \pi}{4}\right)=-\frac{\sqrt{2}}{2}, \quad \cot \left(\frac{\pi}{6}\right)=\frac{\cos \pi / 6}{\sin \pi / 6}=\frac{\sqrt{3} / 2}{1 / 2}=\sqrt{3}
$$

12. Find all solutions to $e^{x^{2}-1}=1$.

Solution: Applying \ln to both sides yields $x^{2}-1=\ln 1=0$. Then $x^{2}=1$, so $x=1$ or $x=-1$.
13. Simplify $\ln \left(x e^{x} \sqrt{x+1}\right)$.

Solution:

$$
\begin{aligned}
\ln \left(x e^{x} \sqrt{x+1}\right) & =\ln x+\ln e^{x}+\ln \sqrt{x+1} \\
& =\ln x+x+\frac{1}{2} \ln (x+1)
\end{aligned}
$$

14. Write the domain of $\ln \left(x^{2}-4\right)$ in interval notation.

Solution: The domain of \ln is all positive numbers, so the domain of \ln consists of all numbers x so that $x^{2}-4>0$. Then $x^{2}>4$, so the domain is $(-\infty,-2) \cup(2,+\infty)$.
15. Let $f(x)=x^{2}$ and $g(x)=3 x+1$. Compute $(f \circ g)(2)$.

Solution: $g(2)=3 \cdot 2+1=7$, so $(f \circ g)(2)=f(7)=7^{2}=49$.
16. Write $\sin \left(e^{x+1}\right)$ as a composition of elementary functions.

Solution: Let $g(x)=x+1$. Then

$$
\sin \left(e^{x+1}\right)=\sin \left(e^{g(x)}\right)=(\sin \circ \exp \circ g)(x)
$$

17. Graph $f(x)=\left\{\begin{array}{ll}x^{2}+2, & x<1, \\ -x+1, & 1 \leq x<\pi, \\ \cos x, & x \geq \pi\end{array}\right\}$ on the interval $(-1,2 \pi)$.

Solution:

18. Draw the graph of $y=\tan x$ on the interval $(-\pi, \pi)$.

Solution:

19. Draw the graphs of $y=e^{x}$ and $y=1 / x$.

Solution:

