Practice Midterm Problems

1. Circle "True" or "False." No explanation is needed.
(a) True False $f(x)=|x-2|$ is one-to-one.
(b) True False $\lim _{x \rightarrow 5}\left(\frac{2 x}{x-5}-\frac{10}{x-5}\right)=\lim _{x \rightarrow 5} \frac{2 x}{x-5}-\lim _{x \rightarrow 5} \frac{10}{x-5}$
(c) True False A function can have infinitely many horizontal asymptotes.
(d) True False If f is continuous on [0,2], then f is differentiable on [0,2].
(e) True False The nth derivative of $f(x)=e^{2 x}$ is $2^{n} e^{2 x}$.
2. The graph of $f(x)$ is shown. Answer the following questions and explain your reasoning:
(a) What is the domain of f ?
(b) What is the range of f ?
(c) Is f one-to-one?
(d) Where is f not differentiable?
(e) Sketch the graph of $-f(-x)+1$ on the coordinate system.

3. For each of the following limits, evaluate it or show it does not exist.
(a) $\lim _{x \rightarrow-1} \frac{x^{2}-3 x-4}{x+1}$
(b) $\lim _{x \rightarrow \frac{1}{2}} \ln (\sin (\pi x))$
(c) $\lim _{x \rightarrow 2}\left(x^{2}-4\right)^{2} \sin \left(\frac{1}{x-2}\right)$
(d) $\lim _{x \rightarrow \infty} \frac{3-x}{x^{2}-3 x+2}$
(e) $\lim _{x \rightarrow 0} f(x)$, where $f(x)= \begin{cases}e^{x} & \text { if } x<0, \\ 0 & \text { if } x=0, \\ \tan ^{2} x+1 & \text { if } x>0\end{cases}$
4. Let $g(t)=\frac{t+3}{t-1}$.
(a) Find the equation(s) of all vertical asymptote(s) of g.
(b) Find the equation(s) of all horizontal asymptotes of g.
(c) Find $g^{-1}(t)$.
5. (a) Let $f(x)=x^{2}-\sin x$. Compute $f^{\prime}(x)$.
(b) Show there exists a number a between $\left[0, \frac{\pi}{2}\right]$ such that the graph of $x^{2}-\sin x$ has a horizontal tangent line at a.
6. (a) Using the limit definition of the derivative, compute the derivative of $f(x)=$ $2 \sqrt{x}$
(b) Find the equation of the tangent line to the curve when $x=1$.
7. Find the derivatives of the following functions:
(a) $f(x)=x^{5}-x^{3 / 4}+1$
(b) $f(x)=x \ln x$
(c) $f(x)=\sin \left(2 e^{x}\right)$
(d) $f(x)=\frac{x^{2}-1}{x^{2}+1}$
(e) $f(x)=\ln \left(\frac{\sqrt{x} \cot x}{e^{x}}\right)$
(f) $f(x)=|x|$
8. The displacement (in centimeters) of a particle moving back and forth along a straight line is given by $s(t)=2^{t}+t^{3}+1$, where t is measured in seconds.
(a) Find the average velocity of the particle from $t=1$ to $t=3$.
(b) Find the instantaneous velocity of the particle at $t=1$.
(c) Find the acceleration of the particle at $t=1$.
9. The figure shows the graphs of f, f^{\prime}, and $f^{\prime \prime}$. Identify each curve and explain your choices.

10. Sketch a possible graph of $f(x)$ which satisfies all of the following conditions:
(i) $f(0)=1$
(ii) $\lim _{x \rightarrow-\infty} f(x)=0$
(iii) $f^{\prime}(0)=1$
(iv) f is increasing on $[-1,1]$
(v) $\lim _{x \rightarrow 3^{-}} f(x)=5$
(vi) $\lim _{x \rightarrow 3^{+}} f(x)=2$
(vii) f is decreasing on $[3, \infty)$
(viii) $\lim _{x \rightarrow \infty} f(x)=-\infty$
