Practice Midterm Problems

1. Circle "True" or "False." No explanation is needed.

(a) **True False** f(x) = |x - 2| is one-to-one.

- (b) **True False** $\lim_{x \to 5} \left(\frac{2x}{x-5} \frac{10}{x-5} \right) = \lim_{x \to 5} \frac{2x}{x-5} \lim_{x \to 5} \frac{10}{x-5}$
- (c) **True False** A function can have infinitely many horizontal asymptotes.
- (d) **True False** If f is continuous on [0, 2], then f is differentiable on [0, 2].
- (e) **True False** The *n*th derivative of $f(x) = e^{2x}$ is $2^n e^{2x}$.

2. The graph of f(x) is shown. Answer the following questions and explain your reasoning:

- (a) What is the domain of f?
- (b) What is the range of *f*?
- (c) Is *f* one-to-one?
- (d) Where is *f* not differentiable?
- (e) Sketch the graph of -f(-x) + 1 on the coordinate system.

3. For each of the following limits, evaluate it or show it does not exist.

(a)
$$\lim_{x \to -1} \frac{x^2 - 3x - 4}{x + 1}$$

(b) $\lim_{x \to \frac{1}{2}} \ln(\sin(\pi x))$

(c)
$$\lim_{x \to 2} (x^2 - 4)^2 \sin\left(\frac{1}{x - 2}\right)$$

(d)
$$\lim_{x \to \infty} \frac{1}{x^2 - 3x + 2}$$

(e)
$$\lim_{x \to 0} f(x)$$
, where $f(x) = \begin{cases} e^x & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ \tan^2 x + 1 & \text{if } x > 0 \end{cases}$

- 4. Let $g(t) = \frac{t+3}{t-1}$.
 - (a) Find the equation(s) of all vertical asymptote(s) of *g*.
 - (b) Find the equation(s) of all horizontal asymptotes of *g*.
 - (c) Find $g^{-1}(t)$.
- 5. (a) Let $f(x) = x^2 \sin x$. Compute f'(x).
 - (b) Show there exists a number *a* between $[0, \frac{\pi}{2}]$ such that the graph of $x^2 \sin x$ has a horizontal tangent line at *a*.
- 6. (a) Using the limit definition of the derivative, compute the derivative of $f(x) = 2\sqrt{x}$.
 - (b) Find the equation of the tangent line to the curve when x = 1.
- 7. Find the derivatives of the following functions:

(a)
$$f(x) = x^5 - x^{3/4} + 1$$

(b) $f(x) = x \ln x$
(c) $f(x) = \sin(2e^x)$
(d) $f(x) = \frac{x^2 - 1}{x^2 + 1}$
(e) $f(x) = \ln\left(\frac{\sqrt{x} \cot x}{e^x}\right)$
(f) $f(x) = |x|$

8. The displacement (in centimeters) of a particle moving back and forth along a straight line is given by $s(t) = 2^t + t^3 + 1$, where *t* is measured in seconds.

- (a) Find the average velocity of the particle from t = 1 to t = 3.
- (b) Find the instantaneous velocity of the particle at t = 1.
- (c) Find the acceleration of the particle at t = 1.

9. The figure shows the graphs of f, f', and f''. Identify each curve and explain your choices.

10. Sketch a possible graph of f(x) which satisfies all of the following conditions:

(i)
$$f(0) = 1$$

(ii)
$$\lim_{x \to -\infty} f(x) = 0$$

- (iii) f'(0) = 1
- (iv) f is increasing on [-1, 1]

(v)
$$\lim_{x \to 3^{-}} f(x) = 5$$

(vi)
$$\lim_{x \to 3^+} f(x) = 2$$

(vii) *f* is decreasing on $[3, \infty)$

(viii)
$$\lim_{x \to \infty} f(x) = -\infty$$