Practice Midterm Problems - Solutions

1. Circle "True" or "False." No explanation is needed.
(a) True False $f(x)=|x-2|$ is one-to-one.
(b) True False $\lim _{x \rightarrow 5}\left(\frac{2 x}{x-5}-\frac{10}{x-5}\right)=\lim _{x \rightarrow 5} \frac{2 x}{x-5}-\lim _{x \rightarrow 5} \frac{10}{x-5}$
(c) True False A function can have infinitely many horizontal asymptotes.
(d) True False If f is continuous on [0,2], then f is differentiable on [0,2].
(e) True False The nth derivative of $f(x)=e^{2 x}$ is $2^{n} e^{2 x}$.

Solution:

(a) False: Since $f(1)=f(3)=1, f$ is not one-to-one.
(b) False: Neither $\lim _{x \rightarrow 5} \frac{2 x}{x-5}$ nor $\lim _{x \rightarrow 5} \frac{10}{x-5}$ exists, so their difference does not make sense. However,

$$
\lim _{x \rightarrow 5}\left(\frac{2 x}{x-5}-\frac{10}{x-5}\right)=\lim _{x \rightarrow 5} \frac{2 x-10}{x-5}=\lim _{x \rightarrow 5} 2=2
$$

(c) False: A function can have at most two horizontal asymptotes, corresponding to the finite limit values of the function as $x \rightarrow+\infty$ and $x \rightarrow-\infty$.
(d) False: Continuity does not imply differentiability; for example, $|x|$ is continuous but not differentiable at $x=0$.
(e) True: Since $\frac{d}{d x}\left(e^{2 x}\right)=2 e^{2 x}$, differentiating n times produces n factors of 2 , and hence the 2^{n} coefficient.
2. The graph of $f(x)$ is shown. Answer the following questions and explain your reasoning:
(a) What is the domain of f ?

Solution: The domain of f is $[-2,2]$.
(b) What is the range of f ?

Solution: The range of f is $[-1,1]$.
(c) Is f one-to-one?

Solution: f is not a one-to-one function, as it fails the horizontal line test for each y between -1 and 1 .
(d) Where is f not differentiable?

Solution: f is not differentiable at $x=-1$ and at $x=1$, as it has a "corner" at each x-value.
(e) Sketch the graph of $-f(-x)+1$ on the coordinate system.

Solution:

3. For each of the following limits, evaluate it or show it does not exist.
(a) $\lim _{x \rightarrow-1} \frac{x^{2}-3 x-4}{x+1}$

Solution: Substituting in $x=-1$ gives $0 / 0$, so we must rewrite the limit:

$$
\lim _{x \rightarrow-1} \frac{x^{2}-3 x-4}{x+1}=\lim _{x \rightarrow-1} \frac{(x+1)(x-4)}{x+1}=\lim _{x \rightarrow-1}(x-4)=(-1-4)=-5
$$

(b) $\lim _{x \rightarrow \frac{1}{2}} \ln (\sin (\pi x))$

Solution: Since \ln and sin are both continuous functions where they are defined, we can substitute in $x=1 / 2$:

$$
\lim _{x \rightarrow \frac{1}{2}} \ln (\sin (\pi x))=\ln \left(\sin \left(\pi \frac{1}{2}\right)\right)=\ln (1)=0
$$

(c) $\lim _{x \rightarrow 2}\left(x^{2}-4\right)^{2} \sin \left(\frac{1}{x-2}\right)$

Solution: Note that for all $x \neq 2$,

$$
-1 \leq \sin \left(\frac{1}{x-2}\right) \leq 1
$$

Since $\left(x^{2}-4\right)^{2} \geq 0$ for all x,

$$
-\left(x^{2}-4\right)^{2} \leq\left(x^{2}-4\right)^{2} \sin \left(\frac{1}{x-2}\right) \leq\left(x^{2}-4\right)^{2}
$$

Since $\lim _{x \rightarrow 2}\left(x^{2}-4\right)^{2}=0$, the limits of the left and right functions as $x \rightarrow 2$ are both 0 . By the Squeeze Theorem, then,

$$
\lim _{x \rightarrow 2}\left(x^{2}-4\right)^{2} \sin \left(\frac{1}{x-2}\right)=0
$$

(d) $\lim _{x \rightarrow \infty} \frac{3-x}{x^{2}-3 x+2}$

Solution: Substituting in $x=+\infty$ gives $-\infty /(\infty-\infty)$, so we must rewrite the limit. We divide the numerator and denominator by x^{2}, the highest power of x appearing in the denominator:

$$
\lim _{x \rightarrow \infty} \frac{3-x}{x^{2}-3 x+2} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\frac{3}{x^{2}}-\frac{1}{x^{2}}}{1-\frac{3}{x}+\frac{2}{x^{2}}}=\frac{0-0}{1-0+0}=\frac{0}{1}=0
$$

(e) $\lim _{x \rightarrow 0} f(x)$, where $f(x)= \begin{cases}e^{x} & \text { if } x<0, \\ 0 & \text { if } x=0, \\ \tan ^{2} x+1 & \text { if } x>0\end{cases}$

Solution: Since $f(x)$ has a piecewise definition that changed at $x=0$, we evaluatue the left- and right-hand limits separately:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} e^{x}=e^{0}=1 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} \tan ^{2} x+1=\tan ^{2} 0+1=1
\end{aligned}
$$

Since these one-sided limits exist and agree, $\lim _{x \rightarrow 1} f(x)=1$.
4. Let $g(t)=\frac{t+3}{t-1}$.
(a) Find the equation(s) of all vertical asymptote(s) of g.

Solution: We look for where $g(t)$ could have an infinite discontinuity. Since $t+3$ and $t-1$ are both continuous, a discontinuity could occur only when the denominator $t-1$ is 0 , so at $t=1$. At this t-value, $t+3=4 \neq 0$, so $g(t)$ does indeed "blow up" at $t=1$. Hence, $t=1$ is the only vertical asymptote of g.
(b) Find the equation(s) of all horizontal asymptotes of g. Solution: We note that attempting to evaluate g at ∞ yields ∞ / ∞, so we must rewrite the expression in the limit. We divide the numerator and denominator by the highest power of t in the denominator:

$$
\lim _{t \rightarrow \infty} g(t)=\lim _{t \rightarrow \infty} \frac{t+3}{t-1} \cdot \frac{\frac{1}{t}}{\frac{1}{t}}=\lim _{t \rightarrow \infty} \frac{1+\frac{3}{t}}{1-\frac{1}{t}}=\frac{1+0}{1-0}=1
$$

Similarly, $\lim _{t \rightarrow-\infty} g(t)=1$, so $y=1$ is the only horizontal asymptote of g.
Solution: (Alternate) We first rewrite $g(t)$ as a polynomial plus a simpler rational function:

$$
g(t)=\frac{t+3}{t-1}=\frac{(t-1)+4}{t-1}=1+\frac{4}{t-1} .
$$

Then

$$
\lim _{t \rightarrow \infty} g(t)=\lim _{t \rightarrow \infty} 1+\frac{4}{t-1}=1+0=1
$$

and similarly $\lim _{t \rightarrow-\infty} g(t)=1$, so $y=1$ is the only horizontal asymptote of g.
(c) Find $g^{-1}(t)$.

Solution: We use the form of $g(t)$ from the alternate solution to part (b). Then

$$
y=g(t)=1+\frac{4}{t-1}
$$

so $y-1=\frac{4}{t-1}$. Then $t-1=\frac{4}{y-1}$, so

$$
t=1+\frac{4}{y-1}=\frac{y-1+4}{y-1}=\frac{y+3}{y-1}=g^{-1}(y)
$$

Substituting t for $y, g^{-1}(t)=\frac{t+3}{t-1}$.
5. (a) Let $f(x)=x^{2}-\sin x$. Compute $f^{\prime}(x)$.

Solution: We compute that $f^{\prime}(x)=2 x-\cos x$.
(b) Show there exists a number a between $\left[0, \frac{\pi}{2}\right]$ such that the graph of $x^{2}-\sin x$ has a horizontal tangent line at a.
Solution: We must show that, for some a in $\left(0, \frac{\pi}{2}\right), f^{\prime}(a)=0$, We note that $f^{\prime}(0)=$ $2(0)-\cos (0)=-1<0$ and $f^{\prime}(\pi / 2)=2\left(\frac{\pi}{2}\right)-\cos \left(\frac{\pi}{2}\right)=\pi-0=\pi>0$. Since $f^{\prime}(x)$ is a continuous function, the Intermediate Value theorem states that $f^{\prime}(a)=0$ for some a in $\left(0, \frac{\pi}{2}\right)$.
6. (a) Using the limit definition of the derivative, compute the derivative of $f(x)=$ $2 \sqrt{x}$.
Solution: We use the limit definition of $f^{\prime}(x)$:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{2 \sqrt{x+h}-2 \sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2(\sqrt{x+h}-\sqrt{x})}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\lim _{h \rightarrow 0} \frac{2((x+h)-x)}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{2}{(\sqrt{x+h}+\sqrt{x})}=\frac{2}{2 \sqrt{x}}=\frac{1}{\sqrt{x}}
\end{aligned}
$$

(b) Find the equation of the tangent line to the curve when $x=1$.

Solution: At $x=1, f(1)=2 \sqrt{1}=2$, and $f^{\prime}(1)=\frac{1}{\sqrt{1}}=1$. Then the equation of the tangent line is

$$
y-2=1(x-1)=x-1
$$

or $y=x+1$.
7. Find the derivatives of the following functions:
(a) $f(x)=x^{5}-x^{3 / 4}+1$

Solution: By the Power Rule, $f^{\prime}(x)=5 x^{4}-\frac{3}{4} x^{-1 / 4}$.
(b) $f(x)=x \ln x$

Solution: Using the product rule,

$$
f^{\prime}(x)=(x)^{\prime} \ln x+x(\ln x)^{\prime}=\ln x+x\left(\frac{1}{x}\right)=\ln x+1
$$

(c) $f(x)=\sin \left(2 e^{x}\right)$

Solution: Write $f=h \circ g$, where $h(u)=\sin u$ and $u=g(x)=2 e^{x}$. Then

$$
f^{\prime}(x)=h^{\prime}(g(x)) g^{\prime}(x)=\cos \left(2 e^{x}\right)\left(2 e^{x}\right)=2 e^{x} \cos \left(2 e^{x}\right)
$$

(d) $f(x)=\frac{x^{2}-1}{x^{2}+1}$

Solution: We use the quotient rule:

$$
f^{\prime}(x)=\frac{\left(x^{2}+1\right)(2 x)-\left(x^{2}-1\right)(2 x)}{\left(x^{2}+1\right)}=\frac{4 x}{\left(x^{2}+1\right)^{2}}
$$

(e) $f(x)=\ln \left(\frac{\sqrt{x} \cot x}{e^{x}}\right)$

Solution: We first write $f(x)=g(h(x))$, where $g(u)=\ln u$ and $h(x)=\frac{\sqrt{x} \cot x}{e^{x}}$. Using the product and quotient rules, we compute

$$
\begin{aligned}
h^{\prime}(x) & =\frac{e^{x}\left(\frac{1}{2 \sqrt{x}} \cot x+\sqrt{x}\left(-\csc ^{2} x\right)\right)-\left(e^{x}\right)(\sqrt{x} \cot x)}{\left(e^{x}\right)^{2}} \\
& =\frac{\cot x-2 x \csc ^{2} x-2 x \cot x}{2 \sqrt{x} e^{x}}
\end{aligned}
$$

Since $g^{\prime}(u)=1 / u$,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{e^{x}}{\sqrt{x} \cot x} \cdot \frac{\cot x-2 x \csc ^{2} x-2 x \cot x}{2 \sqrt{x} e^{x}} \\
& =\frac{\cot x-2 x \csc ^{2} x-2 x \cot x}{2 x \cot x}=\frac{1}{2 x}-\frac{\csc ^{2} x}{\cot x}-1 .
\end{aligned}
$$

Alternately, $f(x)=\ln (\sqrt{x})+\ln (\cot x)-\ln \left(e^{x}\right)=\frac{1}{2} \ln x+\ln (\cot x)-x$, so

$$
f^{\prime}(x)=\frac{1}{2 x}+\frac{-\csc ^{2} x}{\cot x}-1=\frac{1}{2 x}-\frac{\csc ^{2} x}{\cot x}-1
$$

(f) $f(x)=|x|$

Solution: Recall that $f(x)=|x|$ is defined piecewise by $f(x)=\left\{\begin{array}{ll}x, & x \geq 0 \\ -x, & x<0\end{array}\right.$. For $x>0, f(x)=x$, so $f^{\prime}(x)=1$. For $x<0, f(x)=-x$, so $f^{\prime}(x)=-1$. For $x=0$, however, we compute the left- and right-hand limits of the difference quotient:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{|x|-0}{x-0} & =\lim _{x \rightarrow 0^{+}} \frac{x}{x}=1, \\
\lim _{x \rightarrow 0^{-}} \frac{|x|-0}{x-0} & =\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=-1 .
\end{aligned}
$$

Since these limits exist but do not agree, $f^{\prime}(0)$ does not exist. Hence, $f^{\prime}(x)$ is

$$
f^{\prime}(x)= \begin{cases}1, & x>0 \\ -1, & x<0\end{cases}
$$

8. The displacement (in centimeters) of a particle moving back and forth along a straight line is given by $s(t)=2^{t}+t^{3}+1$, where t is measured in seconds.
(a) Find the average velocity of the particle from $t=1$ to $t=3$.

Solution: We compute the average velocity, in centimeters per second:

$$
v_{a v g}=\frac{s(3)-s(1)}{3-1}=\frac{\left(2^{3}+3^{3}+1\right)-\left(2^{1}+1+1\right)}{2}=\frac{32}{2}=16
$$

(b) Find the instantaneous velocity of the particle at $t=1$.

Solution: We compute $s^{\prime}(t)$:

$$
s^{\prime}(t)=(\ln 2) 2^{t}+3 t^{2}
$$

Then $s^{\prime}(1)=(\ln 2) 2^{1}+3(1)^{2}=2 \ln 2+3$, in cm / s.
(c) Find the acceleration of the particle at $t=1$.

Solution: We compute $s^{\prime \prime}(t)$ by differentiating $s^{\prime}(t)$ again:

$$
s^{\prime \prime}(t)=(\ln 2)^{2} 2^{t}+6 t
$$

Then $s^{\prime \prime}(1)=2(\ln 2)^{2}+6$, in $\mathrm{cm} / \mathrm{s}^{2}$.
9. The figure shows the graphs of f, f^{\prime}, and $f^{\prime \prime}$. Identify each curve and explain your choices.

Solution: None of the graphs is 0 when the dashed graph has its right-most horizontal tangent line, so the dashed-graph function is the highest derivative present and therefore must be $f^{\prime \prime}$. The dashed graph has height 0 precisely when the solid graph has a horizontal tangent line, so it is the derivative of the solid-graph function. Hence, the solid graph represents the graph of f^{\prime}. Finally, the solid graph has height 0 exactly when the dotted graph has a horizontal tangent, so this dotted graph represents the graph of f.
10. Sketch a possible graph of $f(x)$ which satisfies all of the following conditions:
(i) $f(0)=1$
(ii) $\lim _{x \rightarrow-\infty} f(x)=0$
(iii) $f^{\prime}(0)=1$
(iv) f is increasing on $[-1,1]$
(v) $\lim _{x \rightarrow 3^{-}} f(x)=5$
(vi) $\lim _{x \rightarrow 3^{+}} f(x)=2$
(vii) f is decreasing on $[3, \infty)$
(viii) $\lim _{x \rightarrow \infty} f(x)=-\infty$

Solution: Here is one possible graph of such a function f :

