Practice Final Exam: Winter 2007 - Solutions

1. (40 points) Find $\frac{d y}{d x}$ for each function. Each answer should be a function of x only.
(a) (10 points) $y=\frac{2}{x-1}-\frac{1}{\sqrt{x}}$.

Solution: Write $y=2(x-1)^{-1}-x^{-1 / 2}$. Then

$$
\frac{d y}{d x}=-2(x-1)^{-2}+\frac{1}{2} x^{-3 / 2}=-\frac{2}{(x-1)^{2}}+\frac{1}{2 x^{3 / 2}}
$$

(b) (10 points) $y=(\sin x)^{\cos x}$.

Solution: Since $y=(\sin x)^{\cos x}, \ln y=\cos x \ln (\sin x)$. Then

$$
\begin{aligned}
\frac{1}{y} \cdot \frac{d y}{d x} & =-\sin x \ln (\sin x)+\cos x \frac{\cos x}{\sin x} \\
\frac{d y}{d x} & =y\left(\frac{\cos ^{2} x}{\sin x}-\sin x \ln (\sin x)\right)=(\sin x)^{\cos x}\left(\frac{\cos ^{2} x}{\sin x}-\sin x \ln (\sin x)\right)
\end{aligned}
$$

(c) (10 points) $y=\sqrt{\tan \left(x^{2}\right)}$.

Solution: Since $y=\left(\tan x^{2}\right)^{1 / 2}$,

$$
\frac{d y}{d x}=\frac{1}{2 \sqrt{\tan x^{2}}}\left(\sec ^{2} x^{2}\right)(2 x)=\frac{x \sec ^{2} x^{2}}{\sqrt{\tan x^{2}}}
$$

(d) (10 points) $y=\frac{(2 x+1)^{4} \sin \left(x^{2}\right)}{(\ln x) \sqrt{3 x-1}}$.

Solution: Since this is a complicated product of powers, we consider $\ln y$:

$$
\begin{aligned}
\ln y & =\ln \left(\frac{(2 x+1)^{4} \sin \left(x^{2}\right)}{(\ln x) \sqrt{3 x-1}}\right) \\
& =4 \ln (2 x+1)+\ln \sin x^{2}-\ln (\ln x)-\frac{1}{2} \ln (3 x-1) \\
\frac{1}{y} \cdot \frac{d y}{d x} & =\frac{4(2)}{2 x+1}+\frac{\left(\cos x^{2}\right)(2 x)}{\sin x^{2}}-\frac{1 / x}{\ln x}-\frac{1}{2} \frac{3}{3 x-1} \\
\frac{d y}{d x} & =\frac{(2 x+1)^{4} \sin \left(x^{2}\right)}{(\ln x) \sqrt{3 x-1}}\left(\frac{8}{2 x+1}+2 x \cot x^{2}-\frac{1}{x \ln x}-\frac{3}{2(3 x-1)}\right)
\end{aligned}
$$

2. (10 points) Find the equation of the tangent line to the curve

$$
e^{x^{2}}+e^{y^{2}}=2 e
$$

at the point $(-1,1)$.
Solution: Differentiate $e^{x^{2}}+e^{y^{2}}=2 e$ implicitly:

$$
2 x e^{x^{2}}+2 y e^{y^{2}} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{2 y e^{y^{2}}}{2 x e^{x^{2}}}=-\frac{y e^{y^{2}}}{x e^{x^{2}}}
$$

At $(x, y)=(-1,1)$,

$$
-\frac{y e^{y^{2}}}{x e^{x^{2}}}=-\frac{(-1) e^{(-1)^{2}}}{(1) e^{1^{2}}}=\frac{e}{e}=1
$$

so the tangent line is $y-1=1(x+1)$, or $y=x+2$.
3. (20 points) Let

$$
f(x)=\ln \left(x^{2}-1\right)
$$

(a) (10 points) You must show all your work, but please write your final answers in the box.
Solution:

The domain of $f(x)$ is:	$(-\infty,-1) \cup(1, \infty)$
$f(x)$ is increasing on:	$(1, \infty)$
$f(x)$ is decreasing on:	$(-\infty,-1)$
$f(x)$ has local maxima at:	None
$f(x)$ has local minima at:	None
$f(x)$ is concave up on:	None
$f(x)$ is concave down on:	$(-\infty,-1) \cup(1, \infty)$

Since $f(x)=\ln \left(x^{2}-1\right), f$ is defined when $x^{2}>1$, so when $x>1$ or when $x<-1$. Computing $f^{\prime}(x)$ yields

$$
f^{\prime}(x)=\frac{2 x}{x^{2}-1}
$$

again defined for $|x|>1$. Since $x^{2}-1>0$ for all such x, the sign of $f^{\prime}(x)$ is the same as that of x. Hence, f is increasing for $x>1$, and f is decreasing for $x<-1$.
Since $f^{\prime}(x)$ is defined on the same domain as $f(x)$ is, and since $f^{\prime}(x)=0$ only when $x=0, f$ has no critical numbers, and hence no local minima or maxima.

Finally, we compute $f^{\prime \prime}(x)$:

$$
f^{\prime \prime}(x)=\frac{\left(x^{2}-1\right)(2)-(2 x)(2 x)}{\left(x^{2}-1\right)^{2}}=\frac{-2\left(x^{2}+1\right)}{\left(x^{2}-1\right)^{2}}
$$

For $|x|>1, f^{\prime \prime}(x)<0$, so f is concave down on all of its domain.
(b) (4 points) Compute the following four limits.

$$
\begin{array}{ll}
\lim _{x \rightarrow \infty} \ln \left(x^{2}-1\right)= & \lim _{x \rightarrow-\infty} \ln \left(x^{2}-1\right)= \\
\lim _{x \rightarrow 1^{+}} \ln \left(x^{2}-1\right)= & \lim _{x \rightarrow-1^{-}} \ln \left(x^{2}-1\right)=
\end{array}
$$

Solution: As $x \rightarrow \infty$ or $x \rightarrow-\infty, x^{2}-1 \rightarrow \infty$, so

$$
\lim _{x \rightarrow \infty} \ln \left(x^{2}-1\right)=\lim _{x \rightarrow-\infty} \ln \left(x^{2}-1\right)=\infty
$$

As $x \rightarrow 1^{+}$or $x \rightarrow-1^{-}, x^{2}-1 \rightarrow 0^{+}$, so

$$
\lim _{x \rightarrow 1^{+}} \ln \left(x^{2}-1\right)=\lim _{x \rightarrow-1^{-}} \ln \left(x^{2}-1\right)=\lim _{u \rightarrow 0^{+}} \ln u=-\infty
$$

(c) (1 points) List all vertical and horizontal asymptotes of $y=\ln \left(x^{2}-1\right)$.

Solution: f has no horizontal asymptotes, and f has two vertical asymptotes, at $x=1$ and $x=-1$.
(d) (5 points) Using your answers from parts (a) and (b), sketch a graph of

$$
f(x)=\ln \left(x^{2}-1\right)
$$

Even if your answers in parts (a) and (b) are wrong, if your sketch correctly uses those answers, you may earn partial credit.

Solution:

4. (20 points) A particle is moving along the curve $x^{2}-4 x y-y^{2}=-11$. Given that the x-coordinate of the particle is changing at 3 units/second, how fast is the distance from the particle to the origin changing when the particle is at the point (1,2)? Hint: As an intermediate step, you should compute the value of $\frac{d y}{d t}$ when $x=1$ and $y=2$.
Solution: The distance z to the origin is given by $z^{2}=x^{2}+y^{2}$, so, differentiating with respect to the time t,

$$
2 z \frac{d z}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \Rightarrow \frac{d z}{d t}=\frac{1}{z}\left(x \frac{d x}{d t}+y \frac{d y}{d t}\right)
$$

Differentiating the curve equation $x^{2}-4 x y-y^{2}=-11$ with respect to t,

$$
2 x \frac{d x}{d t}-4 y \frac{d x}{d t}-4 x \frac{d y}{d t}-2 y \frac{d y}{d t}=0 \quad \Rightarrow \quad(x-2 y) \frac{d x}{d t}-(2 x+y) \frac{d y}{d t}=0
$$

At $(x, y)=(1,2), \frac{d x}{d t}=3$, so $(-3)(3)-(4) \frac{d y}{d t}$, and $\frac{d y}{d t}=-\frac{9}{4}$. Also, at this point, $z=$ $\sqrt{1^{2}+2^{2}}=\sqrt{5}$, so

$$
\frac{d z}{d t}=\frac{1}{\sqrt{5}}\left((1)(3)+(2)\left(-\frac{9}{4}\right)\right)=-\frac{3}{2 \sqrt{5}} .
$$

5. (20 points) A balloon is rising at a constant speed of $1 \mathrm{~m} / \mathrm{sec}$. A girl is cycling along a straight road at a speed of $2 \mathrm{~m} / \mathrm{sec}$. When she passes under the balloon it is 3 m above her. How fast is the distance between the girl and the balloon increasing 2 seconds later? Solution: Let x represent the horizontal position of the girl from the balloon, and let y represent the height of the balloon. Then the distance z between the girl and the balloon is given by $z^{2}=x^{2}+y^{2}$. Differentiating with respect to time t,

$$
2 z \frac{d z}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \Rightarrow \frac{d z}{d t}=\frac{1}{z}\left(x \frac{d x}{d t}+y \frac{d y}{d t}\right)
$$

At this time, $x=(2)(2)=4$ and $y=3+(2)(1)=5$, so $z=\sqrt{5^{2}+4^{2}}=\sqrt{41}$. Since $\frac{d x}{d t}=2$ and $\frac{d y}{d t}=1$,

$$
\frac{d z}{d t}=\frac{1}{\sqrt{41}}((4)(2)+(5)(1))=\frac{13}{\sqrt{41}} \frac{\mathrm{~m}}{\mathrm{sec}} .
$$

6. (20 points) A Norman window consists of a rectangle surmounted by a semicircle, as shown. Given that the total area of the window is $A=8+2 \pi$, find the minimum possible perimeter of the window. (Please note the horizontal line between the rectangle and the semicircle does not count as part of the perimeter.) Hint: The total area has been carefully chosen so that the minimum perimeter occurs at a very simple value of r. If your optimal value of r is complicated, you have done something incorrectly.

Solution: Let A denote the area of the window, and P the perimeter of the window. Then

$$
A=\frac{\pi}{2} r^{2}+2 r h, \quad P=\pi r+2 r+2 h .
$$

We seek to minimize P. Since the area is fixed at $8+2 \pi$, we have

$$
8+2 \pi=\frac{\pi}{2} r^{2}+2 r h \Rightarrow h=\frac{8+2 \pi-\frac{\pi}{2} r^{2}}{2 r}=\frac{4+\pi}{r}-\frac{\pi r}{4} .
$$

Then

$$
P=\pi r+2 r+2\left(\frac{4+\pi}{r}-\frac{\pi r}{4}\right)=\frac{\pi}{2} r+2 r+\frac{2(\pi+4)}{r}
$$

so $P^{\prime}(r)=\frac{\pi}{2}+2-\frac{2(\pi+4)}{r^{2}}$. Setting this equal to 0 , we get that

$$
\frac{\pi+4}{2}=\frac{2(\pi+4)}{r^{2}} \Rightarrow r^{2}=4 \quad \Rightarrow \quad r=2
$$

We examine the sign of $P^{\prime}(r)$ for r on either side of $r=2$. For $0<r<2, P^{\prime}(r)<0$, and for $r>2, P^{\prime}(r)>0$, so by the First Derivative Test for Absolute Extreme, P has an absolute minimum at $r=2$. At this value, $P(2)=2 \pi+8$.
7. (20 points) Suppose you have a cone with constant height H and constant radius R, and you want to put a smaller cone "upside down" inside the larger cone (see figure). If h is the height of the smaller cone, what should h be to maximize the volume of the smaller cone? The optimal value of h will depend on H. Recall that the volume of a cone with base radius r and height h is given by the formula $V=\frac{1}{3} \pi r^{2} h$.

Solution: Using the symbols in the diagram, the volume of the small cone is $\frac{\pi}{3} r^{2} h$. By the similar triangles in the diagram, we relate r and h by

$$
\frac{r}{R}=\frac{H-h}{H}
$$

or $r=\frac{R}{H}(H-h)$. Hence, the volume is

$$
V(h)=\frac{\pi}{3}\left(\frac{R}{H}(H-h)\right)^{2} h=\frac{\pi R^{2}}{3 H^{2}}\left(H^{2} h-2 H h^{2}+h^{3}\right) .
$$

Hence, $V^{\prime}(h)=\frac{\pi R^{2}}{3 H^{2}}\left(H^{2}-4 H h+3 h^{2}\right)$. Setting this equal to 0 and factoring, we have that $(H-3 h)(H-h)=0$, so $h=\frac{1}{3} H$ and $h=H$ are the critical points.

The domain of $V(h)$ is the closed interval $[0, H]$. Checking the endpoints, we see that $V(0)=0$ and $V(H)=0$, so the positive value

$$
V\left(\frac{1}{3} H\right)=\frac{\pi R^{2}}{3 H^{2}}\left(H-\frac{1}{3} H\right)^{2}\left(\frac{1}{3} H\right)=\frac{4 \pi}{81} R^{2} H
$$

is the absolute maximum. Therefore, the height $h=\frac{1}{3} H$ gives a maximum volume.
8. (10 points) For parts (a) and (b), compute the given limits, if they exist. If you assert that a limit does not exist, you need to justify your answer to get full credit.
(a) (5 points) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-3 x+1}-\sqrt{x^{2}+2}\right)$

Solution: We rewrite using the conjugate radical:

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-3 x+1}-\sqrt{x^{2}+2}\right) & =\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-3 x+1}-\sqrt{x^{2}+2}\right) \frac{\sqrt{x^{2}-3 x+1}+\sqrt{x^{2}+2}}{\sqrt{x^{2}-3 x+1}+\sqrt{x^{2}+2}} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}-3 x+1-\left(x^{2}+2\right)}{\sqrt{x^{2}-3 x+1}+\sqrt{x^{2}+2}} \\
& =\lim _{x \rightarrow \infty} \frac{-3 x-1}{\sqrt{x^{2}-3 x+1}+\sqrt{x^{2}+2}} \\
& =\lim _{x \rightarrow \infty} \frac{-3 x-1}{\sqrt{x^{2}-3 x+1}+\sqrt{x^{2}+2}} \cdot \frac{1 / x}{1 / x} \\
& =\lim _{x \rightarrow \infty} \frac{-3-\frac{1}{x}}{\sqrt{1-\frac{3}{x}+\frac{1}{x^{2}}}+\sqrt{1+\frac{2}{x^{2}}}}=\frac{-3}{1+1}=-\frac{3}{2}
\end{aligned}
$$

(b) (5 points) $\lim _{x \rightarrow 2} e^{\frac{1}{x-2}}$

Solution: Let $u=\frac{1}{x-2}$. As $x \rightarrow 2^{+}, u \rightarrow \frac{1}{0^{+}}=+\infty$, and as $x \rightarrow 2^{-}, u \rightarrow \frac{1}{0^{-}}=-\infty$. Hence,

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} e^{\frac{1}{x-2}}=\lim _{u \rightarrow+\infty} e^{u}=+\infty \\
& \lim _{x \rightarrow 2^{-}} e^{\frac{1}{x-2}}=\lim _{u \rightarrow-\infty} e^{u}=0
\end{aligned}
$$

Since these values differ, the (two-sided) limit does not exist.

