String Topology and the Based Loop Space

Eric J. Malm

Simons Center for Geometry and Physics Stony Brook University emalm@scgp.stonybrook.edu

2 Aug 2011 Structured Ring Spectra: TNG University of Hamburg Introduction Background Results and Methods

String Topology Hochschild Homology Results

String Topology

Fix k a commutative ring. Let

- *M* be a closed, *k*-oriented, smooth manifold of dimension *d*
- $LM = Map(S^1, M)$

String Topology Hochschild Homology Results

String Topology

Fix k a commutative ring. Let

- *M* be a closed, *k*-oriented, smooth manifold of dimension *d*
- $LM = Map(S^1, M)$

Chas-Sullivan, '99: $H_{*+d}(LM)$ has operations

- graded-commutative *loop product* \circ , from intersection product on *M* and concatenation product on ΩM
- degree-1 cyclic operator Δ with $\Delta^2 = 0$, from S^1 rotation

String Topology Hochschild Homology Results

String Topology

Fix k a commutative ring. Let

- *M* be a closed, *k*-oriented, smooth manifold of dimension *d*
- $LM = Map(S^1, M)$

Chas-Sullivan, '99: $H_{*+d}(LM)$ has operations

- graded-commutative *loop product* \circ , from intersection product on *M* and concatenation product on ΩM
- degree-1 cyclic operator Δ with Δ^2 = 0, from S¹ rotation

Make $H_{*+d}(LM)$ a Batalin-Vilkovisky (BV) algebra:

• • and Δ combine to produce a degree-1 Lie bracket { , } on $H_{*+d}(LM)$ (the *loop bracket*)

Hochschild Homology

Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibit similar operations:

- $HH_*(A)$ has a degree-1 Connes operator B with $B^2 = 0$,
- $HH^*(A)$ has a graded-commutative cup product \cup and a degree-1 Lie bracket [,] compatible with \cup .

The Hochschild homology and cohomology of an algebra A exhibit similar operations:

- $HH_*(A)$ has a degree-1 Connes operator B with $B^2 = 0$,
- *HH*^{*}(*A*) has a graded-commutative cup product ∪ and a degree-1 Lie bracket [,] compatible with ∪.

Goal: Find A so that $HH_*(A) \cong HH^*(A) \cong$ string topology BV algebra

The Hochschild homology and cohomology of an algebra A exhibit similar operations:

- $HH_*(A)$ has a degree-1 Connes operator B with $B^2 = 0$,
- *HH*^{*}(*A*) has a graded-commutative cup product ∪ and a degree-1 Lie bracket [,] compatible with ∪.

Goal: Find A so that $HH_*(A) \cong HH^*(A) \cong$ string topology BV algebra

Candidates: DGAs associated to M

1. C^{*}M, cochains of M: requires M 1-connected

The Hochschild homology and cohomology of an algebra A exhibit similar operations:

- $HH_*(A)$ has a degree-1 Connes operator B with $B^2 = 0$,
- *HH*^{*}(*A*) has a graded-commutative cup product ∪ and a degree-1 Lie bracket [,] compatible with ∪.

Goal: Find A so that $HH_*(A) \cong HH^*(A) \cong$ string topology BV algebra

Candidates: DGAs associated to M

- 1. C^{*}M, cochains of M: requires M 1-connected
- **2**. $C_*\Omega M$, chains on the based loop space ΩM

The Hochschild homology and cohomology of an algebra A exhibit similar operations:

- $HH_*(A)$ has a degree-1 Connes operator B with $B^2 = 0$,
- *HH*^{*}(*A*) has a graded-commutative cup product ∪ and a degree-1 Lie bracket [,] compatible with ∪.

Goal: Find A so that $HH_*(A) \cong HH^*(A) \cong$ string topology BV algebra

Candidates: DGAs associated to M

- 1. C^{*}M, cochains of M: requires M 1-connected
- **2**. $C_*\Omega M$, chains on the based loop space ΩM

Why $C_*\Omega M$? Goodwillie, '85: $H_*(LM) \cong HH_*(C_*\Omega M)$, M connected

Introduction String Topology Background Hochschild Hor Results and Methods Results

Results

Theorem (M.)

Let M be a connected, k-oriented Poincaré duality space of formal dimension d. Then Poincaré duality induces an isomorphism

 $D: HH^*(C_*\Omega M) \to HH_{*+d}(C_*\Omega M).$

Results

Theorem (M.)

Let M be a connected, k-oriented Poincaré duality space of formal dimension d. Then Poincaré duality induces an isomorphism

 $D: HH^*(C_*\Omega M) \to HH_{*+d}(C_*\Omega M).$

Uses "derived" Poincaré duality (Klein, Dwyer-Greenlees-Iyengar)

• Generalize (co)homology with local coefficients *E* to allow $C_*\Omega M$ -module coefficients

Results

Theorem (M.)

Let M be a connected, k-oriented Poincaré duality space of formal dimension d. Then Poincaré duality induces an isomorphism

 $D: HH^*(C_*\Omega M) \to HH_{*+d}(C_*\Omega M).$

Uses "derived" Poincaré duality (Klein, Dwyer-Greenlees-Iyengar)

- Generalize (co)homology with local coefficients *E* to allow $C_*\Omega M$ -module coefficients
- Cap product with [M] still induces an isomorphism

$$H^*(M; E) \to H_{*+d}(M; E).$$

Introduction String Top Background Hochschile Results and Methods Results

String Topology Hochschild Homology Results

Results

Compatibility of Hochschild operations under D:

Theorem (M.)

 $HH^{*}(C_{*}\Omega M)$ with the Hochschild cup product and the operator

 $-D^{-1}BD$ is a BV algebra, compatible with the Hochschild Lie bracket.

Introduction String To Background Hochschi Results and Methods Results

Results

Compatibility of Hochschild operations under D:

Theorem (M.)

 $HH^*(C_*\Omega M)$ with the Hochschild cup product and the operator $-D^{-1}BD$ is a BV algebra, compatible with the Hochschild Lie bracket.

Theorem (M.)

When M is a manifold, the composite

$$HH^*(C_*\Omega M) \xrightarrow{D} HH_{*+d}(C_*\Omega M) \xrightarrow{Goodwillie} H_{*+d}(LM)$$

takes this BV structure to that of string topology.

Introduction String To Background Hochsch Results and Methods Results

String Topology Hochschild Homology Results

Results

Compatibility of Hochschild operations under D:

Theorem (M.)

 $HH^*(C_*\Omega M)$ with the Hochschild cup product and the operator $-D^{-1}BD$ is a BV algebra, compatible with the Hochschild Lie bracket.

Theorem (M.)

When M is a manifold, the composite

$$HH^{*}(C_{*}\Omega M) \xrightarrow{D} HH_{*+d}(C_{*}\Omega M) \xrightarrow{Goodwillie} H_{*+d}(LM)$$

takes this BV structure to that of string topology.

Generalizes results of Abbaspour-Cohen-Gruher ('05) and Vaintrob ('06) when $M \simeq K(G, 1)$, so $C_*\Omega M \simeq kG$.

Replace ΩM with an equivalent top group so $C_*\Omega M$ a DGA

Replace ΩM with an equivalent top group so $C_*\Omega M$ a DGA

• (Co)homology with local coefficients: for *E* a $k[\pi_1 M]$ -module,

$$H_*(M; E) \cong \operatorname{Tor}_*^{C_*\Omega M}(E, k), \quad H^*(M; E) \cong \operatorname{Ext}_{C_*\Omega M}^*(k, E)$$

Replace ΩM with an equivalent top group so $C_*\Omega M$ a DGA

• (Co)homology with local coefficients: for *E* a $k[\pi_1 M]$ -module,

$$H_*(M; E) \cong \operatorname{Tor}^{C_*\Omega M}_*(E, k), \quad H^*(M; E) \cong \operatorname{Ext}^*_{C_*\Omega M}(k, E)$$

• For *E* a $C_*\Omega M$ -module, take $E \otimes_{C_*\Omega M}^L k$ and $R \operatorname{Hom}_{C_*\Omega M}(k, E)$ as "derived" (co)homology with local coefficients

Replace ΩM with an equivalent top group so $C_*\Omega M$ a DGA

• (Co)homology with local coefficients: for *E* a $k[\pi_1 M]$ -module,

$$H_*(M; E) \cong \operatorname{Tor}^{C_*\Omega M}_*(E, k), \quad H^*(M; E) \cong \operatorname{Ext}^*_{C_*\Omega M}(k, E)$$

- For *E* a $C_*\Omega M$ -module, take $E \otimes_{C_*\Omega M}^L k$ and $R \operatorname{Hom}_{C_*\Omega M}(k, E)$ as "derived" (co)homology with local coefficients
- View $[M] \in H_d M$ as a class in $\operatorname{Tor}_d^{C_*\Omega M}(k,k)$. PD says

$$\operatorname{ev}_{[M]} : R \operatorname{Hom}_{C_*\Omega M}(k, E) \to E \otimes_{C_*\Omega M}^L \Sigma^{-d} k$$

a weak equivalence for *E* a $k[\pi_1 M]$ -module

Replace ΩM with an equivalent top group so $C_*\Omega M$ a DGA

• (Co)homology with local coefficients: for *E* a $k[\pi_1 M]$ -module,

$$H_*(M; E) \cong \operatorname{Tor}^{C_*\Omega M}_*(E, k), \quad H^*(M; E) \cong \operatorname{Ext}^*_{C_*\Omega M}(k, E)$$

- For *E* a $C_*\Omega M$ -module, take $E \otimes_{C_*\Omega M}^L k$ and $R \operatorname{Hom}_{C_*\Omega M}(k, E)$ as "derived" (co)homology with local coefficients
- View $[M] \in H_d M$ as a class in $\operatorname{Tor}_d^{C_*\Omega M}(k,k)$. PD says

$$\operatorname{ev}_{[M]} : R \operatorname{Hom}_{C_*\Omega M}(k, E) \to E \otimes_{C_*\Omega M}^L \Sigma^{-d} k$$

a weak equivalence for *E* a $k[\pi_1 M]$ -module

 Algebraic Postnikov tower, compactness of k as a C_{*}ΩM-module show a weak equivalence for all C_{*}ΩM-modules E. Introduction Background Results and Methods Hochschild Homology and Cohomology Ring Structures BV Algebras

Hochschild Homology and Cohomology

Produce $D: HH^*(C_*\Omega M) \xrightarrow{\cong} HH_{*+d}(C_*\Omega M)$ from Poincaré duality

Hochschild Homology and Cohomology

Produce $D: HH^*(C_*\Omega M) \xrightarrow{\cong} HH_{*+d}(C_*\Omega M)$ from Poincaré duality

• Classical $HH_*(kG, M) \cong H_*(G, M^c)$ from simplicial isomorphism $B_{\bullet}(*, G, G \times G^{\text{op}}) \cong B_{\bullet}(G, G, G)$ of bar constructions

Hochschild Homology and Cohomology

Produce $D: HH^*(C_*\Omega M) \xrightarrow{\cong} HH_{*+d}(C_*\Omega M)$ from Poincaré duality

- Classical $HH_*(kG, M) \cong H_*(G, M^c)$ from simplicial isomorphism $B_{\bullet}(*, G, G \times G^{\text{op}}) \cong B_{\bullet}(G, G, G)$ of bar constructions
- Let Ad be $C_*\Omega M$ with $C_*\Omega M$ -module structure from conjugation

Hochschild Homology and Cohomology

Produce $D: HH^*(C_*\Omega M) \xrightarrow{\cong} HH_{*+d}(C_*\Omega M)$ from Poincaré duality

- Classical $HH_*(kG, M) \cong H_*(G, M^c)$ from simplicial isomorphism $B_{\bullet}(*, G, G \times G^{\text{op}}) \cong B_{\bullet}(G, G, G)$ of bar constructions
- Let Ad be $C_*\Omega M$ with $C_*\Omega M$ -module structure from conjugation

$$HH^*(C_*\Omega M)$$
 $Ext^*_{C_*\Omega M}(k, Ad)$

$$HH_{*+d}(C_*\Omega M)$$
 $Tor_{*+d}^{C_*\Omega M}(Ad,k)$

Hochschild Homology and Cohomology

Produce $D: HH^*(C_*\Omega M) \xrightarrow{\cong} HH_{*+d}(C_*\Omega M)$ from Poincaré duality

- Classical $HH_*(kG, M) \cong H_*(G, M^c)$ from simplicial isomorphism $B_{\bullet}(*, G, G \times G^{\text{op}}) \cong B_{\bullet}(G, G, G)$ of bar constructions
- Let Ad be $C_*\Omega M$ with $C_*\Omega M$ -module structure from conjugation

$$HH^*(C_*\Omega M) \xrightarrow{\cong} Ext^*_{C_*\Omega M}(k, \operatorname{Ad})$$

$$HH_{*+d}(C_*\Omega M) \xrightarrow{\cong} \operatorname{Tor}_{*+d}^{C_*\Omega M}(\operatorname{Ad},k)$$

• Chains: Need Eilenberg-Zilber, additional A_{∞} -morphisms

Hochschild Homology and Cohomology

Produce $D: HH^*(C_*\Omega M) \xrightarrow{\cong} HH_{*+d}(C_*\Omega M)$ from Poincaré duality

- Classical $HH_*(kG, M) \cong H_*(G, M^c)$ from simplicial isomorphism $B_{\bullet}(*, G, G \times G^{\text{op}}) \cong B_{\bullet}(G, G, G)$ of bar constructions
- Let Ad be $C_*\Omega M$ with $C_*\Omega M$ -module structure from conjugation

$$HH^{*}(C_{*}\Omega M) \xrightarrow{\cong} Ext^{*}_{C_{*}\Omega M}(k, \operatorname{Ad})$$
$$\cong \downarrow ev_{[M]}$$
$$HH_{*+d}(C_{*}\Omega M) \xrightarrow{\cong} \operatorname{Tor}_{*+d}^{C_{*}\Omega M}(\operatorname{Ad}, k)$$

- Chains: Need Eilenberg-Zilber, additional A_{∞} -morphisms
- Apply derived Poincaré duality

Hochschild Homology and Cohomology

Produce $D: HH^*(C_*\Omega M) \xrightarrow{\cong} HH_{*+d}(C_*\Omega M)$ from Poincaré duality

- Classical $HH_*(kG, M) \cong H_*(G, M^c)$ from simplicial isomorphism $B_{\bullet}(*, G, G \times G^{\text{op}}) \cong B_{\bullet}(G, G, G)$ of bar constructions
- Let Ad be $C_*\Omega M$ with $C_*\Omega M$ -module structure from conjugation

$$HH^{*}(C_{*}\Omega M) \xrightarrow{\cong} Ext^{*}_{C_{*}\Omega M}(k, \operatorname{Ad})$$
$$D \downarrow \qquad \cong \downarrow ev_{[M]}$$
$$HH_{*+d}(C_{*}\Omega M) \xrightarrow{\cong} \operatorname{Tor}_{*+d}^{C_{*}\Omega M}(\operatorname{Ad}, k)$$

- Chains: Need Eilenberg-Zilber, additional A_{∞} -morphisms
- Apply derived Poincaré duality to get D

Cohen-Jones, '01: Construct loop product on Thom spectrum LM^{-TM}

• Umkehr map $\Delta^!$ from $M \xrightarrow{\Delta} M \times M$ makes LM^{-TM} a ring spectrum

Cohen-Jones, '01: Construct loop product on Thom spectrum LM^{-TM}

• Umkehr map $\Delta^!$ from $M \xrightarrow{\Delta} M \times M$ makes LM^{-TM} a ring spectrum

Goal: Relate to topological Hochschild cohomology $THH_5(\Sigma^{\infty}_{+}\Omega M)$

Cohen-Jones, '01: Construct loop product on Thom spectrum LM^{-TM}

• Umkehr map $\Delta^!$ from $M \xrightarrow{\Delta} M \times M$ makes LM^{-TM} a ring spectrum Goal: Relate to topological Hochschild cohomology $THH_S(\Sigma^{\infty}_+ \Omega M)$ Construct LM^{-TM} using parametrized spectra:

Cohen-Jones, '01: Construct loop product on Thom spectrum LM^{-TM}

• Umkehr map $\Delta^!$ from $M \xrightarrow{\Delta} M \times M$ makes LM^{-TM} a ring spectrum Goal: Relate to topological Hochschild cohomology $THH_S(\Sigma^{\infty}_+ \Omega M)$ Construct LM^{-TM} using parametrized spectra:

• *LM* a space over *M* via $ev : LM \to M$

Cohen-Jones, '01: Construct loop product on Thom spectrum LM^{-TM}

• Umkehr map $\Delta^!$ from $M \xrightarrow{\Delta} M \times M$ makes LM^{-TM} a ring spectrum Goal: Relate to topological Hochschild cohomology $THH_5(\Sigma^{\infty}_+\Omega M)$ Construct LM^{-TM} using parametrized spectra:

- *LM* a space over *M* via $ev : LM \to M$
- Form fiberwise suspension spectrum $\Sigma_M^{\infty} LM_+$ over M

Cohen-Jones, '01: Construct loop product on Thom spectrum LM^{-TM}

• Umkehr map $\Delta^!$ from $M \xrightarrow{\Delta} M \times M$ makes LM^{-TM} a ring spectrum Goal: Relate to topological Hochschild cohomology $THH_S(\Sigma^{\infty}_+\Omega M)$ Construct LM^{-TM} using parametrized spectra:

- *LM* a space over *M* via $ev : LM \to M$
- Form fiberwise suspension spectrum $\Sigma_M^{\infty} LM_+$ over M
- Twist with S^{-TM} , stable normal bundle of *M*, then mod out by *M*:

$$LM^{-TM} = (\Sigma_M^{\infty}LM_+ \wedge_M S^{-TM})//M$$

Cohen-Jones, '01: Construct loop product on Thom spectrum LM^{-TM}

• Umkehr map $\Delta^!$ from $M \xrightarrow{\Delta} M \times M$ makes LM^{-TM} a ring spectrum Goal: Relate to topological Hochschild cohomology $THH_5(\Sigma^{\infty}_+\Omega M)$ Construct LM^{-TM} using parametrized spectra:

- *LM* a space over *M* via $ev : LM \to M$
- Form fiberwise suspension spectrum $\Sigma_M^{\infty}LM_+$ over M
- Twist with S^{-TM} , stable normal bundle of *M*, then mod out by *M*:

$$LM^{-TM} = (\Sigma_M^{\infty}LM_+ \wedge_M S^{-TM})//M$$

Essentially homological; twist allows umkehr map $f^!$ for $f : N \hookrightarrow M$

Parametrized Atiyah Duality

General Statement

For spectrum \mathcal{E} over \mathcal{M} , can also take section spectrum $\Gamma_{\mathcal{M}}(\mathcal{E})$

General Statement

For spectrum \mathcal{E} over \mathcal{M} , can also take section spectrum $\Gamma_{\mathcal{M}}(\mathcal{E})$

• (Klein; May-Sigurdsson) Natural equivalence

$$\mathcal{E}^{-TM} \xrightarrow{\simeq} \Gamma_{M}(\mathcal{E})$$

General Statement

For spectrum \mathcal{E} over \mathcal{M} , can also take section spectrum $\Gamma_{\mathcal{M}}(\mathcal{E})$

• (Klein; May-Sigurdsson) Natural equivalence

$$\mathcal{E}^{-T\mathcal{M}} \xrightarrow{\simeq} \Gamma_{\mathcal{M}}(\mathcal{E}) \ \downarrow^{f^*} \Gamma_{\mathcal{N}}(f^*\mathcal{E})$$

• For $f : N \to M$, pullback f^*

General Statement

For spectrum \mathcal{E} over \mathcal{M} , can also take section spectrum $\Gamma_{\mathcal{M}}(\mathcal{E})$

• (Klein; May-Sigurdsson) Natural equivalence

$$\begin{array}{ccc} \mathcal{E}^{-TM} & \stackrel{\simeq}{\longrightarrow} & \Gamma_{M}(\mathcal{E}) \\ f^{!} & & \downarrow f^{*} \\ (f^{*}\mathcal{E})^{-TN} & \stackrel{\simeq}{\longrightarrow} & \Gamma_{N}(f^{*}\mathcal{E}) \end{array}$$

• For $f : N \to M$, pullback f^* corresponds to umkehr map $f^!$

General Statement

For spectrum \mathcal{E} over \mathcal{M} , can also take section spectrum $\Gamma_{\mathcal{M}}(\mathcal{E})$

• (Klein; May-Sigurdsson) Natural equivalence

$$\begin{array}{ccc} \mathcal{E}^{-TM} & \stackrel{\simeq}{\longrightarrow} & \Gamma_{M}(\mathcal{E}) \\ f^{!} & & \downarrow f^{*} \\ (f^{*}\mathcal{E})^{-TN} & \stackrel{\simeq}{\longrightarrow} & \Gamma_{N}(f^{*}\mathcal{E}) \end{array}$$

• For $f : N \to M$, pullback f^* corresponds to umkehr map $f^!$ When $\mathcal{E} = S_M$, recovers classical Atiyah duality $M^{-TM} \simeq F(M_+, S)$

Hochschild Homology and Cohomology Ring Structures BV Algebras

Parametrized Atiyah Duality

Back to String Topology Now take $\mathcal{E} = \Sigma_{M}^{\infty} L M_{+}$

Back to String Topology

Now take $\mathcal{E} = \Sigma_M^{\infty} L M_+$

• $\Gamma_{\mathcal{M}}(\Sigma_{\mathcal{M}}^{\infty}LM_{+})$ a ring spectrum by Δ^{*} , loop concatenation

Back to String Topology

Now take $\mathcal{E} = \Sigma_{\mathcal{M}}^{\infty} L \mathcal{M}_{+}$

- $\Gamma_{\mathcal{M}}(\Sigma_{\mathcal{M}}^{\infty}LM_{+})$ a ring spectrum by Δ^{*} , loop concatenation
- Atiyah duality: $LM^{-TM} \simeq \Gamma_M(\Sigma_M^{\infty}LM_+)$ as ring spectra

Back to String Topology

Now take $\mathcal{E} = \Sigma_M^{\infty} L M_+$

- $\Gamma_{\mathcal{M}}(\Sigma^{\infty}_{\mathcal{M}}LM_{+})$ a ring spectrum by Δ^{*} , loop concatenation
- Atiyah duality: $LM^{-TM} \simeq \Gamma_M(\Sigma_M^{\infty}LM_+)$ as ring spectra

Move towards $\Sigma^{\infty}_{+}\Omega M$:

• Using $M \simeq B\Omega M$, classical equiv $LBG \simeq EG \times_G G^c$,

Back to String Topology

Now take $\mathcal{E} = \Sigma_M^{\infty} L M_+$

- $\Gamma_{\mathcal{M}}(\Sigma^{\infty}_{\mathcal{M}}LM_{+})$ a ring spectrum by Δ^{*} , loop concatenation
- Atiyah duality: $LM^{-TM} \simeq \Gamma_M(\Sigma_M^{\infty}LM_+)$ as ring spectra

Move towards $\Sigma^{\infty}_{+}\Omega M$:

• Using $M \simeq B\Omega M$, classical equiv $LBG \simeq EG \times_G G^c$,

$$\Gamma_{\mathcal{M}}(\Sigma_{\mathcal{M}}^{\infty} L\mathcal{M}_{+}) \simeq \Gamma_{\mathcal{B}\Omega\mathcal{M}}(\mathcal{E}\Omega\mathcal{M}_{+} \wedge_{\Omega\mathcal{M}} \Sigma_{+}^{\infty}\Omega\mathcal{M}^{c})$$
$$\simeq F_{\Omega\mathcal{M}}(\mathcal{E}\Omega\mathcal{M}_{+}, \Sigma_{+}^{\infty}\Omega\mathcal{M}^{c}) = (\Sigma_{+}^{\infty}\Omega\mathcal{M}^{c})^{h\Omega\mathcal{M}}$$

Back to String Topology

Now take $\mathcal{E} = \Sigma_{\mathcal{M}}^{\infty} L \mathcal{M}_{+}$

- $\Gamma_{\mathcal{M}}(\Sigma^{\infty}_{\mathcal{M}}LM_{+})$ a ring spectrum by Δ^{*} , loop concatenation
- Atiyah duality: $LM^{-TM} \simeq \Gamma_M(\Sigma_M^{\infty}LM_+)$ as ring spectra

Move towards $\Sigma^{\infty}_{+}\Omega M$:

• Using $M \simeq B\Omega M$, classical equiv $LBG \simeq EG \times_G G^c$,

$$\Gamma_{\mathcal{M}}(\Sigma_{\mathcal{M}}^{\infty}L\mathcal{M}_{+}) \simeq \Gamma_{\mathcal{B}\Omega\mathcal{M}}(\mathcal{E}\Omega\mathcal{M}_{+} \wedge_{\Omega\mathcal{M}} \Sigma_{+}^{\infty}\Omega\mathcal{M}^{c})$$
$$\simeq \mathcal{F}_{\Omega\mathcal{M}}(\mathcal{E}\Omega\mathcal{M}_{+}, \Sigma_{+}^{\infty}\Omega\mathcal{M}^{c}) = (\Sigma_{+}^{\infty}\Omega\mathcal{M}^{c})^{h\Omega\mathcal{M}}$$

- $(\Sigma^{\infty}_{+}\Omega M^{c})^{h\Omega M}$ a ring spectrum via convolution product

Topological Hochschild Constructions

Topological Hochschild Cohomology

 $(\Sigma^{\infty}_{+}G^{c})^{hG}$ and $THH_{S}(\Sigma^{\infty}_{+}G)$ both Tots of cosimplicial spectra

• Equivalent via simplicial homeo $B_{\bullet}(*, G, G \times G^{op}) \cong B_{\bullet}(G, G, G)$

Topological Hochschild Constructions

Topological Hochschild Cohomology

 $(\Sigma^{\infty}_{+}G^{c})^{hG}$ and $THH_{S}(\Sigma^{\infty}_{+}G)$ both Tots of cosimplicial spectra

- Equivalent via simplicial homeo $B_{\bullet}(*, G, G \times G^{op}) \cong B_{\bullet}(G, G, G)$
- Both ring spectra via McClure-Smith cup-pairing:

$$LM^{-TM} \simeq (\Sigma^{\infty}_{+}\Omega M^{c})^{h\Omega M} \simeq THH_{S}(\Sigma^{\infty}_{+}\Omega M)$$
 as ring spectra

Topological Hochschild Constructions

Topological Hochschild Cohomology

 $(\Sigma^{\infty}_{+}G^{c})^{hG}$ and $THH_{S}(\Sigma^{\infty}_{+}G)$ both Tots of cosimplicial spectra

- Equivalent via simplicial homeo $B_{\bullet}(*, G, G \times G^{op}) \cong B_{\bullet}(G, G, G)$
- Both ring spectra via McClure-Smith cup-pairing:

 $LM^{-TM} \simeq (\Sigma^{\infty}_{+}\Omega M^{c})^{h\Omega M} \simeq THH_{S}(\Sigma^{\infty}_{+}\Omega M)$ as ring spectra

Topological Hochschild Homology Similarly, $\Sigma^{\infty}_{+}LM \simeq \Sigma^{\infty}_{+}\Omega M^{c}_{h\Omega M} \simeq THH^{S}(\Sigma^{\infty}_{+}\Omega M)$

Topological Hochschild Constructions

Topological Hochschild Cohomology

 $(\Sigma^{\infty}_{+}G^{c})^{hG}$ and $THH_{S}(\Sigma^{\infty}_{+}G)$ both Tots of cosimplicial spectra

- Equivalent via simplicial homeo $B_{\bullet}(*, G, G \times G^{op}) \cong B_{\bullet}(G, G, G)$
- Both ring spectra via McClure-Smith cup-pairing:

$$LM^{-TM} \simeq (\Sigma^{\infty}_{+}\Omega M^{c})^{h\Omega M} \simeq THH_{S}(\Sigma^{\infty}_{+}\Omega M)$$
 as ring spectra

Topological Hochschild Homology

Similarly, $\Sigma^{\infty}_{+}LM \simeq \Sigma^{\infty}_{+}\Omega M^{c}_{h\Omega M} \simeq THH^{S}(\Sigma^{\infty}_{+}\Omega M)$

 Compatible with LM^{-TM}, (Σ[∞]₊ΩM^c)^{hΩM}, THH₅(Σ[∞]₊ΩM) actions (last two by "cap-pairing" on (co)simplicial level)

Topological Hochschild Constructions

Topological Hochschild Cohomology

 $(\Sigma^{\infty}_{+}G^{c})^{hG}$ and $THH_{S}(\Sigma^{\infty}_{+}G)$ both Tots of cosimplicial spectra

- Equivalent via simplicial homeo $B_{\bullet}(*, G, G \times G^{op}) \cong B_{\bullet}(G, G, G)$
- Both ring spectra via McClure-Smith cup-pairing:

$$LM^{-TM} \simeq (\Sigma^{\infty}_{+}\Omega M^{c})^{h\Omega M} \simeq THH_{S}(\Sigma^{\infty}_{+}\Omega M)$$
 as ring spectra

Topological Hochschild Homology

Similarly, $\Sigma^{\infty}_{+}LM \simeq \Sigma^{\infty}_{+}\Omega M^{c}_{h\Omega M} \simeq THH^{S}(\Sigma^{\infty}_{+}\Omega M)$

 Compatible with LM^{-TM}, (Σ[∞]₊ΩM^c)^{hΩM}, THH₅(Σ[∞]₊ΩM) actions (last two by "cap-pairing" on (co)simplicial level)

Recover chain-level results by applying $- \wedge Hk$, Thom isomorphism

$HH^*(A)$ has cap-product action on $HH_*(A)$ for any algebra A

 $HH^*(A)$ has cap-product action on $HH_*(A)$ for any algebra A

• From *THH* equivs, *D* iso given by Hochschild cap on $z \in HH_d(C_*\Omega M)$:

 $D(f) = f \cap z$

 $\mathit{HH}^*(A)$ has cap-product action on $\mathit{HH}_*(A)$ for any algebra A

• From *THH* equivs, *D* iso given by Hochschild cap on $z \in HH_d(C_*\Omega M)$:

 $D(f) = f \cap z$

• z is image of [M], so B(z) = 0 by naturality

 $HH^*(A)$ has cap-product action on $HH_*(A)$ for any algebra A

• From *THH* equivs, *D* iso given by Hochschild cap on $z \in HH_d(C_*\Omega M)$:

 $D(f) = f \cap z$

- z is image of [M], so B(z) = 0 by naturality
- Algebraic argument of Ginzburg, with signs corrected by Menichi, shows that $HH^*(C_*\Omega M)$ a BV algebra under \cup and $-D^{-1}BD$

 $HH^*(A)$ has cap-product action on $HH_*(A)$ for any algebra A

• From *THH* equivs, *D* iso given by Hochschild cap on $z \in HH_d(C_*\Omega M)$:

$$D(f) = f \cap z$$

- z is image of [M], so B(z) = 0 by naturality
- Algebraic argument of Ginzburg, with signs corrected by Menichi, shows that $HH^*(C_*\Omega M)$ a BV algebra under \cup and $-D^{-1}BD$
- Recover Hochschild Lie bracket [,] as "free" BV Lie bracket

D and Goodwillie isom take \cup to loop product and $-D^{-1}BD$ to Δ

Thanks for your attention!

Slides online soon at http://www.ericmalm.net/work/