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String Topology

Fix k a commutative ring. Let

• M be a closed, k-oriented, smooth manifold of dimension d

• LM = Map(S1,M)

Chas-Sullivan, ’99: H∗+d(LM) has operations

• graded-commutative loop product ○, from intersection product
on M and concatenation product on ΩM

• degree-1 cyclic operator ∆ with ∆2 = 0, from S1 rotation

Make H∗+d(LM) a Batalin-Vilkovisky (BV) algebra:

• ○ and ∆ combine to produce a degree-1 Lie bracket { , } on
H∗+d(LM) (the loop bracket)
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Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibit
similar operations:

• HH∗(A) has a degree-1 Connes operator B with B2 = 0,

• HH∗(A) has a graded-commutative cup product ∪ and a
degree-1 Lie bracket [ , ] compatible with ∪.

Goal: Find A so that HH∗(A) ≅ HH∗(A) ≅ string topology BV algebra

Candidates: DGAs associated to M

1. C∗M, cochains of M: requires M 1-connected

2. C∗ΩM, chains on the based loop space ΩM

Why C∗ΩM? Goodwillie, ’85: H∗(LM) ≅ HH∗(C∗ΩM), M connected

Eric J. Malm String Topology and the Based Loop Space 2/12



Introduction
Background

Results and Methods

String Topology
Hochschild Homology
Results

Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibit
similar operations:

• HH∗(A) has a degree-1 Connes operator B with B2 = 0,

• HH∗(A) has a graded-commutative cup product ∪ and a
degree-1 Lie bracket [ , ] compatible with ∪.

Goal: Find A so that HH∗(A) ≅ HH∗(A) ≅ string topology BV algebra

Candidates: DGAs associated to M

1. C∗M, cochains of M: requires M 1-connected

2. C∗ΩM, chains on the based loop space ΩM

Why C∗ΩM? Goodwillie, ’85: H∗(LM) ≅ HH∗(C∗ΩM), M connected

Eric J. Malm String Topology and the Based Loop Space 2/12



Introduction
Background

Results and Methods

String Topology
Hochschild Homology
Results

Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibit
similar operations:

• HH∗(A) has a degree-1 Connes operator B with B2 = 0,

• HH∗(A) has a graded-commutative cup product ∪ and a
degree-1 Lie bracket [ , ] compatible with ∪.

Goal: Find A so that HH∗(A) ≅ HH∗(A) ≅ string topology BV algebra

Candidates: DGAs associated to M

1. C∗M, cochains of M: requires M 1-connected

2. C∗ΩM, chains on the based loop space ΩM

Why C∗ΩM? Goodwillie, ’85: H∗(LM) ≅ HH∗(C∗ΩM), M connected

Eric J. Malm String Topology and the Based Loop Space 2/12



Introduction
Background

Results and Methods

String Topology
Hochschild Homology
Results

Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibit
similar operations:

• HH∗(A) has a degree-1 Connes operator B with B2 = 0,

• HH∗(A) has a graded-commutative cup product ∪ and a
degree-1 Lie bracket [ , ] compatible with ∪.

Goal: Find A so that HH∗(A) ≅ HH∗(A) ≅ string topology BV algebra

Candidates: DGAs associated to M

1. C∗M, cochains of M: requires M 1-connected

2. C∗ΩM, chains on the based loop space ΩM

Why C∗ΩM? Goodwillie, ’85: H∗(LM) ≅ HH∗(C∗ΩM), M connected

Eric J. Malm String Topology and the Based Loop Space 2/12



Introduction
Background

Results and Methods

String Topology
Hochschild Homology
Results

Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibit
similar operations:

• HH∗(A) has a degree-1 Connes operator B with B2 = 0,

• HH∗(A) has a graded-commutative cup product ∪ and a
degree-1 Lie bracket [ , ] compatible with ∪.

Goal: Find A so that HH∗(A) ≅ HH∗(A) ≅ string topology BV algebra

Candidates: DGAs associated to M

1. C∗M, cochains of M: requires M 1-connected

2. C∗ΩM, chains on the based loop space ΩM

Why C∗ΩM? Goodwillie, ’85: H∗(LM) ≅ HH∗(C∗ΩM), M connected

Eric J. Malm String Topology and the Based Loop Space 2/12



Introduction
Background

Results and Methods

String Topology
Hochschild Homology
Results

Results

Theorem (M.)
Let M be a connected, k-oriented Poincaré duality space of formal
dimension d. Then Poincaré duality induces an isomorphism

D ∶ HH∗
(C∗ΩM) → HH∗+d(C∗ΩM).

Uses “derived” Poincaré duality (Klein, Dwyer-Greenlees-Iyengar)

• Generalize (co)homology with local coefficients E to allow
C∗ΩM-module coefficients

• Cap product with [M] still induces an isomorphism

H∗
(M; E) → H∗+d(M; E).
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Results

Compatibility of Hochschild operations under D:

Theorem (M.)
HH∗(C∗ΩM) with the Hochschild cup product and the operator
−D−1BD is a BV algebra, compatible with the Hochschild Lie bracket.

Theorem (M.)
When M is a manifold, the composite

HH∗
(C∗ΩM)

D
Ð→ HH∗+d(C∗ΩM)

Goodwillie
ÐÐÐÐÐ→ H∗+d(LM)

takes this BV structure to that of string topology.

Generalizes results of Abbaspour-Cohen-Gruher (’05) and Vaintrob
(’06) when M ≃ K(G, 1), so C∗ΩM ≃ kG.
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Derived Poincaré Duality
Replace ΩM with an equivalent top group so C∗ΩM a DGA

• (Co)homology with local coefficients: for E a k[π1M]-module,

H∗(M; E) ≅ TorC∗ΩM
∗

(E, k), H∗
(M; E) ≅ Ext∗C∗ΩM(k, E)

• For E a C∗ΩM-module, take E⊗L
C∗ΩM k and R HomC∗ΩM(k, E) as

“derived” (co)homology with local coefficients

• View [M] ∈ HdM as a class in TorC∗ΩM
d (k, k). PD says

ev[M] ∶ R HomC∗ΩM(k, E) → E⊗L
C∗ΩM Σ

−dk

a weak equivalence for E a k[π1M]-module

• Algebraic Postnikov tower, compactness of k as a C∗ΩM-module
show a weak equivalence for all C∗ΩM-modules E.
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Hochschild Homology and Cohomology

Produce D ∶ HH∗(C∗ΩM)
≅

Ð→ HH∗+d(C∗ΩM) from Poincaré duality

• Classical HH∗(kG,M) ≅ H∗(G,Mc) from simplicial isomorphism
B●(∗,G,G ×Gop) ≅ B●(G,G,G) of bar constructions

• Let Ad be C∗ΩM with C∗ΩM-module structure from conjugation

HH∗(C∗ΩM) Ext∗C∗ΩM(k,Ad)

HH∗+d(C∗ΩM) TorC∗ΩM
∗+d (Ad, k)

≅

≅

≅ ev[M]D

• Chains: Need Eilenberg-Zilber, additional A∞-morphisms

• Apply derived Poincaré duality

to get D
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Homotopy-Theoretic Loop Product

Cohen-Jones, ’01: Construct loop product on Thom spectrum LM−TM

• Umkehr map ∆! from M
∆
Ð→M×M makes LM−TM a ring spectrum

Goal: Relate to topological Hochschild cohomology THHS(Σ∞+ ΩM)

Construct LM−TM using parametrized spectra:

• LM a space over M via ev ∶ LM→M

• Form fiberwise suspension spectrum Σ∞M LM+ over M

• Twist with S−TM, stable normal bundle of M, then mod out by M:

LM−TM
= (Σ∞M LM+ ∧M S−TM

)//M

Essentially homological; twist allows umkehr map f! for f ∶ N↪M

Eric J. Malm String Topology and the Based Loop Space 7/12
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Goal: Relate to topological Hochschild cohomology THHS(Σ∞+ ΩM)

Construct LM−TM using parametrized spectra:

• LM a space over M via ev ∶ LM→M

• Form fiberwise suspension spectrum Σ∞M LM+ over M

• Twist with S−TM, stable normal bundle of M, then mod out by M:

LM−TM
= (Σ∞M LM+ ∧M S−TM

)//M

Essentially homological; twist allows umkehr map f! for f ∶ N↪M
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Parametrized Atiyah Duality

General Statement
For spectrum E over M, can also take section spectrum ΓM(E)

• (Klein; May-Sigurdsson) Natural equivalence

E−TM ΓM(E)

(f∗E)−TN ΓN(f∗E)

≃

f∗

≃

f!

• For f ∶ N→M, pullback f∗

corresponds to umkehr map f!

When E = SM, recovers classical Atiyah duality M−TM ≃ F(M+, S)
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Parametrized Atiyah Duality

Back to String Topology
Now take E = Σ∞M LM+

• ΓM(Σ∞M LM+) a ring spectrum by ∆∗, loop concatenation

• Atiyah duality: LM−TM ≃ ΓM(Σ∞M LM+) as ring spectra

Move towards Σ∞
+
ΩM:

• Using M ≃ BΩM, classical equiv LBG ≃ EG ×G Gc,

ΓM(Σ∞M LM+) ≃ ΓBΩM(EΩM+ ∧ΩM Σ∞+ ΩMc
)

≃ FΩM(EΩM+, Σ∞+ ΩMc
) = (Σ∞

+
ΩMc

)
hΩM

• (Σ∞
+
ΩMc)hΩM a ring spectrum via convolution product
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Topological Hochschild Constructions

Topological Hochschild Cohomology
(Σ∞

+
Gc)hG and THHS(Σ∞+ G) both Tots of cosimplicial spectra

• Equivalent via simplicial homeo B●(∗,G,G ×Gop) ≅ B●(G,G,G)

• Both ring spectra via McClure-Smith cup-pairing:

LM−TM
≃ (Σ∞

+
ΩMc

)
hΩM

≃ THHS(Σ∞+ ΩM) as ring spectra

Topological Hochschild Homology
Similarly, Σ∞

+
LM ≃ Σ∞

+
ΩMc

hΩM ≃ THHS(Σ∞
+
ΩM)

• Compatible with LM−TM, (Σ∞
+
ΩMc)hΩM, THHS(Σ∞+ ΩM) actions

(last two by “cap-pairing” on (co)simplicial level)

Recover chain-level results by applying − ∧Hk, Thom isomorphism
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BV Algebra Structures

HH∗(A) has cap-product action on HH∗(A) for any algebra A

• From THH equivs, D iso given by Hochschild cap on
z ∈ HHd(C∗ΩM):

D(f) = f ∩ z

• z is image of [M], so B(z) = 0 by naturality

• Algebraic argument of Ginzburg, with signs corrected by Menichi,
shows that HH∗(C∗ΩM) a BV algebra under ∪ and −D−1BD

• Recover Hochschild Lie bracket [ , ] as “free” BV Lie bracket

D and Goodwillie isom take ∪ to loop product and −D−1BD to ∆
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Thanks for your attention!

Slides online soon at
http://www.ericmalm.net/work/
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