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Summary
For over a century, fingerprints have been an undisputed personal iden-

tifier. Recent court rulings have sparked interest in verifying uniqueness of
fingerprints.

We seek to determine precisely the probability of duplicate fingerprints.
Our model of fingerprint structure must achieve the following objectives:

• Topological structure in the print, determined by the overall flow of ridges
and valleys, should be described accurately.

• Fine detail, in the form of ridge bifurcations and terminations, must also be
characterized accurately.

• Intrinsic uncertainties, in our ability to reproduce and measure fingerprint
data, must be considered.

• Definite probabilities for specified fingerprint configurations must be cal-
culated.

We place special emphasis on meeting the modeling criteria established by
Stoney and Thornton [1986] in their assessment of prior fingerprint models.

We apply our model to the conditions encountered in forensic science, to de-
termine the legitimacy of current methodology. We also compare the accuracies
of DNA and fingerprint evidence.

Our model predicts uniqueness of prints throughout human history. Fur-
thermore, fingerprint evidence can be as valid as DNA evidence, if not more
so, although both depend on the quality of the forensic material recovered.
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Introduction

What is a Fingerprint?
A fingerprint is a two-dimensional pattern created by the friction ridges on

a human finger [Beeton 2002]. Such ridges are believed to form in the embryo
and to persist unchanged through life. The physical ridge structure appears to
depend chaotically on factors such as genetic makeup and embryonic fluid flow
[Prabhakar 2001]. When a finger is pressed onto a surface, the friction ridges
transfer to it (via skin oil, ink, or blood) a representation of their structure.

Fingerprints have three levels of detail [Beeton 2002]:

1. Overall ridge flow and scarring patterns, insufficient for discrimination.

2. Bifurcations, terminations, and other discontinuities of ridges. The pairwise
locations and orientations of the up to 60 such features in a full print, called
minutiae, provide for detailed comparison [Pankanti et al. 2002].

3. The width of the ridges, the placement of pores, and other intraridge features.
Such detail is frequently missing from all but the best of fingerprints.

Fingerprints as Evidence
The first two levels have been used to match suspects with crime scenes,

and fingerprint evidence was long used without major challenge in U.S. courts
[OnIn.com 2003]. In 1993, however, in Daubert v. Merrill Dow Pharmaceutical,
the U.S. Supreme Court set standards for “scientific” evidence [Wayman 2000]:

1. The theory or technique has been or can be tested.

2. The theory or technique has been subjected to peer review or publication.

3. The existence and maintenance of standards controlling use of the technique.

4. General acceptance of the technique in the scientific community.

5. A known potential rate of error.

Since then, there have been challenges to fingerprint evidence.

Individuality of Fingerprints
Francis Galton [1892] divides a fingerprint into squares with a side length

of six ridge periods and estimates that he can recreate the ridge structure of
a missing square with probability 1

2 . Assuming independence of squares and
introducing additional factors, he concludes that the probability of a given
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fingerprint occurring is 1.45×10−11. Pearson refines Galton’s model and finds
a probability of 1.09 × 10−41 [Stoney and Thornton 1986].

Osterburg [1977] extends Galton’s approach by dividing a fingerprint into
cells that can each contain one of 12 minutia types. Based on independence
among cells and observed frequencies of minutiae, he finds the probability of
a configuration to be 1.33× 10−27. Sclove [1979] extends Osterburg’s model to
dependencies among cells and multiple minutiae in a single cell.

Stoney and Thornton [1986] charge that these models fail to consider key
issues completely: the topological information in level-one detail; minutiae
location, orientation, and type; normal variations in fingerprints; and number
of positions considered. We try to correct some of these omissions.

Our Model: Assumptions and Constraints

Assumptions
• Fingerprints are persistent: they remain the same throughout a person’s

lifetime. Galton [1892] established this fact, in recent times verified from the
processes of development of dermal tissues [Beeton 2002].

• Fingerprints are of the highest possible quality, without damage from abra-
sion and injury.

• The pattern of ridges has some degree of continuity and flow.

• The ridge structure of a fingerprint is in one of five categories: Arch, Left
Loop, Right Loop, Tented Arch, or Whorl, employed in the automatic clas-
sification system of Cappelli et al. [1999] (derived from those of the FBI and
Watson and Wilson [1992]). Each category has a characteristic ridge flow
topology, which we break into homogeneous domains of approximately
unidirectional flow. While Cappelli et al. [1999] raise the issue of “unclas-
sifiable” prints, and they and Marcialis et al. [2001] confuse classes of ridge
structures, we assume that such ambiguities stem from poor print quality.

• Fingerprints may further be distinguished by the location and orientation
of minutiae relative to local ridge flow. Stoney and Thornton [1986] argue
that the ridges define a natural coordinate system, so the location of a minutia
can be specified with a ridge number and a linear measure along that ridge.
Finally, minutiae have one of two equally likely orientations along a ridge.

• Each minutia can be classified as a bifurcation, a termination, or a dot
(Figure 1) [Pankanti et al. 2002; Stoney and Thornton 1986]. Though Galton
[1892] identifies 10 minutia structures and others find 13 [Osterburg et al.
1977], we can ignore these further structures (which are compositions of the
basic three) because of their low frequency [Osterburg et al. 1977].
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Figure 1. The three basic minutiae types (from Galton [1892]). We refer to ending ridges as
terminations.

• A ridge structure produces an unambiguous fingerprint, up to some level
of resolution. A ridge structure can vary in print representations primarily
in geometric data, such as ridge spacing, curvature, and location of minu-
tiae [Stoney and Thornton 1986]. Topological data—ridge counts, minutiae
orientation, and ordering—are robust to such variation and are replicated
consistently.

A more serious consideration is connective ambiguities, such as when a given
physical minutia is represented sometimes as a bifurcation and sometimes
as a termination. But our highest-quality assumption dictates that such
ambiguity arise only where the physical structure itself is ambiguous.

• Location and orientation of minutiae relative to each other are indepen-
dent, though Stoney and Thornton [1986] find some dependency and Sclove
[1979] model such dependency in a Markov process.

• Ridge widths are uniform throughout the print and among different prints,
and ridge detail such as pores and edge shapes is not significant. While
ridge detail is potentially useful, we have little data about types and fre-
quencies.

• Frequencies of ridge structure classes and configurations and minutiae
types do not change appreciably with time. We need this invariance for the
our model’s probabilities to apply throughout human history.

Constraints Implied by Assumptions
• Our model must consider ridge structure, relative position, orientation, and

type of minutiae.

• Locations of minutiae must be specified only to within some uncertainty
dependent on the inherent uncertainty in feature representation.

Model Formulation
We examine a hierarchy of probabilities:

• that the given class of ridge structure occurs,
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• that the ridge structure occurs in the specified configuration of ridge flow
regions, and

• that minutiae are distributed as specified throughout the regions.

We further break this last probability down into a composition of the following
region-specific probabilities:

• that a region contains the specified number of minutiae,

• that the minutiae in this region follow the specified configuration, and

• that the minutiae occur with the specified types and orientations.

Probability of Ridge Structure Class
To each of the five classes of ridge structures (Arches, Left and Right Loops,

Tented Arches, and Whorls), we associate a probability of occurrence (νA, νL,
νR, νT , νW ), which we estimate from observed frequency in the population.

Probability of Ridge Structure Configuration
Each print is partitioned into regions in which the overall flow is relatively

unidirectional, and the class of the print is determined from five prototypical
masks characteristic of ridge-structure classes (Figure 2) [Cappelli et al. 1999].
The variations of flow region structure within each class then depend on pa-
rameters for the class. For example, the ridge structure of a Loop print can be
determined from the locations of the triangular singularity and the core of the
loop (Figure 3). To determine the probability of a particular region configura-
tion, we determine the probability that the associated parameters occur.

Because of uncertainty in the parameters, we discretize the parameter space
at the fundamental resolution limit δ1 (subscript indicates feature level). We use
independent Gaussian distributions about the mean values of the parameters.

We now detail the parameter spaces for each ridge-structure class. The use
of the prototypes requires an X × Y region within the print.

Arch
The parameters for the Arch consist of the Cartesian coordinates (x, y) of

the lower corner of the left region, the height h of the central corridor, and the
four angles θ1, θ2, θ3, θ4 at the inner corners of the left and right regions. We
consider as fixed the width b of the central corridor. The ratio of the resolution
limit δ1 to the mean length of a typical segment determines the uncertainty in
the angular measurement of that segment.
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Arch Right Loop

Tented Arch Whorl

Figure 2. The prototypical region structures and parameters for each ridge structure class, derived
from the masks in Cappelli et al. [1999].

Arch Right Loop Whorl

Figure 3. The prototypical region structures applied to an Arch, a Right Loop, and a Whorl.
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Loops, Left and Right
Since Left and Right Loops are identical except for a horizontal reflection,

we use the same parameter space for both classes. The two principal features
are the position (x, y) of the triangular singularity outside the loop and the
distance r and angle θ of the core of the loop relative to this singularity.

Tented Arch
The major structure is the arch itself; the parameters are the position (x, y)

of the base of the arch and the height h of the arch.

Whorl
The Whorl structure has four major features: the center of the whorl, (xC , yC);

the base of the whorl, (xB , yB); and the triangular singularities to the left and
right of the base of the whorl, at (xL, y:) and (xR, yR). We assume that the center
and the base lie between the two singularities, so that xL ≤ xC and xB ≤ xR,
and that the base lies above the singularities, so that yB ≥ yL and yB ≥ yR.

Probabilities of Intraregion Minutiae Distribution
Since the geometry of a region is uniquely determined by the configuration

parameters, we can divide each unidirectional flow region into parallel ridges.
We can represent the ridge structure of the region as a list of ridge lengths.

We assume a fundamental limit δ2 to resolution of the position of minutiae
along a ridge and divide a ridge into cells of length δ2, in each of which we
find at most one minutia. The probability PTC(n, l, k) that the nth ridge in the
partition, with length l, has a particular configuration of k minutiae is

PTC(n, l, k, . . . ) = Pp(n, k, l)Pc(n, k, l)Pto({ki, pi, oi}),
where Pp is the probability that k minutiae occur on this ridge, Pc the proba-
bility that these k minutiae are configured in the specified pattern on the ridge,
and Pto the probability that these minutiae are of the specified types and ori-
entations, indexed by i and occurring with type probability pi and orientation
probability oi.

Probability of Minutiae Number
Under the assumption that minutiae occur at uniform rates along a ridge,

we expect a binomial distribution for the number of minutiae on the ridge.
Denote the linear minutiae density on ridge n by λ(n). The probability that a
minutia occurs in a given cell of length δ2 is δ2λ(n). Thus, the probability that
k minutiae occur is

Pp(n, k, l, λ) =
(

l/δ2

k

)
(δ2λ)k(1 − δ2λ)l/δ2−k.
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Probability of Minutiae Configuration
Assuming that all configurations of k minutiae are equally likely along the

ridge, the probability of the specified configuration is

Pc(n, k, l) =
1(

l/δ2

k

) .

Probability of Minutiae Type and Orientation
The probability that minutiae occur with specified types and orientations is

Pto({ki, pi, oi}) =
∏

i

pki
i oki

i .

Applying our assumption that the only level-two features are bifurcations,
terminations, and dots, and that orientations are equally likely and independent
along the ridge, this expression reduces to

Pto = pkb

b pkt
t pkd

d

1
2kb+kt

,

with kb + kt + kd = k. Then the total probability for the ridge configuration is

PTC(n, l, k, λ, {ki, pi, oi}) = (δ2λ)k(1 − δ2λ)l/δ2−kpkb

b pkt
t pkd

d

1
2kb+kt

.

The total probability that minutiae are configured as specified through the entire
print is then product of the PTCs for all ridges in all domains, since we assume
that ridges develop minutiae independently.

Applying the assumption that λ and other factors do not depend on n and
are hence uniform throughout the print, we can collapse these multiplicative
factors to an expression for the configuration probability of the entire print:

P
global
TC = (δ2λ)K(1 − δ2λ)L/δ2−KpKb

b pKt
t pKd

d

1
2Kb+Kt

.

Here K is the total number of minutiae in the print, Ki the number of type i,
and L is the total linear length of the ridge structure in the print. The length
L is determined only by the total area XY of the print and the average ridge
width w and is therefore independent of the topological structure of the print.

Parameter Estimation
For parameters in our model, we use published values and estimates based

on the NIST-4 database [Watson and Wilson 1992].
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Level-One Parameters
All lengths are in millimeters (mm); angles are in radians or in degrees.

• Level-one spatial resolution limit δ1: Cappelli et al. [1999] discretize images
into a 28 × 30 grid to determine level-one detail. From these grid dimen-
sions, the physical dimensions of fingerprints, and the assumption of an
uncertainty of three blocks for any level-one feature, we estimate δ1 = 1.5.

• Level-one angular resolution limit δθ: Taking X/2 = 5.4 (determined be-
low) as a typical length scale, we have δθ = δ1/5.4 = 0.279 radians.

• Ridge structure class frequencies νA, νL, νR, νT , and νW : We use the esti-
mates in Prabhakar [2001] (Table 1).

Table 1. Relative frequencies of ridge structure classes (from Prabhakar [2001]).

νA νL νR νT νW

0.0616 0.3252 0.3648 0.0779 0.3252

• Thumbprint width X and height Y : Examining thumbprints from the NIST-
4 database and comparing them with the area given by Pankanti et al. [2002],
we conclude that a width that covers the majority of thumbprints is 212 pixels
in the 500 dpi images, a physical length of 10.8 mm. Similarly, Y = 16.2 mm.

• Arch parameters (x, y), h, b, θ1, θ2, θ3, and θ4: We restrict the parameter
space for (x, y) to the lower half of the thumbprint with horizontal margins
of length b. We estimate b = 2.5 from examination of Arch fingerprints
in the NIST database and from Cappelli et al. [1999]. This estimate places
x ∈ (0, 8.3) and y ∈ (0, 5.6). The mean for (x, y), which we need to describe
the distribution of (x, y), is then (4.2, 2.8). We estimate that x and y both
have a standard deviation of 0.7. We assume that θ1, . . . ,θ4 are all between
0◦ and 45◦ with mean 22.5◦ and standard deviation 5.13◦.

• Loop parameters (x, y), θ, and r: For a left loop (a right loop is reflection
of this), (x, y) must lie in the bottom left quadrant and the mean coordinate
pair is (2.7, 2.8). Additionally, we restrict θ to lie between 15◦ and 75◦, which
allows us to estimate the mean θ as 45◦ with a standard deviation of 15◦. We
estimate that r must be greater than 0 and less than 9.6.

• Tented arch parameters (x, y) and h: Along the y direction, we restrict the
bottom of the arch (x, y) to lie in the bottom half of the thumbprint. We
further estimate that x lies in the middle two-thirds of X . These assumptions
yield x ∈ (1.8, 9) and y ∈ (0, 8.1). Assuming a symmetric distribution
of (x, y) yields (x, y) = (5.4, 2.8) with a standard deviation of 0.7 in both
directions. Logically, we place h between 0 and Y/2 = 8.1. Again, assuming
a symmetric distribution in this parameter space and a standard deviation
of one-eighth the maximum value yields h = 4.05 ± 1.02.
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• Whorl parameters (xL, yL), (xC , yC), (xR, yR), and (xB , yB): We expect
(xL, yL) to be in the bottom left quadrant for all but the most extreme ex-
amples and similarly (xR, yR) to lie in the bottom right quadrant. We place
(xB , yB) between x = X/4 and x = 3X/4 and y = 0 and y = 2Y/3. The
topmost point, (xC , yC), we place in the top half of the thumbprint. We again
put the average values in the center of their restricted areas.

Table 2 summarizes the estimates for these four classes of ridge structures.

Table 2. Parameter range estimates for the ridge structure classes.
All lengths in millimeters (mm), angles in degrees.

Arch parameter ranges

(x, y) (4.2, 2.8)± (0.7, 0.7)

h 4.05± 0.7
b 2.5± 0

θ1–θ4 22.5◦ ± 5.13◦

Loop parameter ranges

(x, y) (2.7, 2.8)± (0.7, 0.7)

θ 45◦ ± 15◦

r 4.58± 0.7

Tented Arch Parameter Ranges

(x, y) (5.4, 2.8)± (0.7, 0.7)

h 4.05± 1.02

Whorl parameter ranges

(xL, yL) (2.7, 4.1)± (0.7, 0.7)

(xC , yC) (5.4, 12.2)± (0.7, 0.7)

(xR, yR) (8.1, 4.1)± (0.7, 0.7)

(xB , yB) (5.4, 4.1)± (0.7, 0.7)

Level-Two Parameters
• Level-two spatial resolution limit δ2: We estimate δ2 by r0, the spatial un-

certainty of minutiae location in two dimensions [Pankanti et al. 2002], and
propose δ2 = 1 for best-case calculations.

• Relative minutiae type frequencies pd, pb, and pt: Almost every compound
minutia can be broken into a combination of bifurcations and terminations
separated spatially. Counting these compound minutiae appropriately, we
determine the relative minutiae frequencies in Table 3.

• Ridge period w: We use 0.463 mm/ridge for the ridge period, the distance
from the middle of one ridge to the middle of an adjacent one [Stoney and
Thornton 1986].
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Table 3. Frequencies of simple minutiae types (from Osterburg et al. [1977]).

pb pt pd

0.356 0.581 0.0629

• Mean number of minutiae per print µ: Under ideal circumstances, we
discern 40 to 60 minutiae on a print [Pankanti et al. 2002]; we take µ = 50±10.

• Linear minutiae density λ: We calculate λ by dividing the average number
of minutiae per a thumbprint µ by the total ridge length of a thumbprint
XY/w. Under ideal conditions, this gives λ = 0.13± 0.03 minutiae/mm. In
practice, we may have λ = 0.05 ± 0.03 minutiae/mm [Pankanti et al. 2002].

Finally, we estimate that there have been 100 billion humans [Haub 1995].

Model Analysis and Testing
Let the probability that a print has a configuration x be pc(x). Assuming

that fingerprint patterns are distributed independently, the probability that two
prints match is p2

c(x). The sum of these probabilities over the configuration
space is the total probability that some match occurs.

The probabilities associated with the two levels of detail are determined
independently, so the total occurrence probability factors into pc1(x1)pc2(x2).
Denoting the level-one configuration subspace asC1 and the level-two subspace
as C2, the total probability of the prints matching is

p =
∑
i∈C1

∑
j∈C2

[pc1(i)pc2(j)]2 =

( ∑
i∈C1

p2
c1(i)

) ∑
j∈C2

p2
c2(j)

 = p1p2.

Level-One Detail Matching
We restrict each parameter to a region of parameter space in which we expect

to find it and assume that it is uniformly distributed there. This approximation
is enough to estimate order of magnitude, which suffices for our analysis. Then

pc1(i) =
νi( ∏

j∈V (i)

Lj

δ1

) , (1)

where Lj is the range of parameter j in V (i), the set of parameters for a type-i
ridge structure. For (1) to be accurate, we should make any Lj corresponding
to angular parameters the product of the angle range with our typical length
of 5.4 mm. The product is simply the total number of compartments in the
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parameter space, since we assume a uniform distribution in that range. Calcu-
lating pc1(i) for each ridge structure type, and summing squares, we find the
probability that two thumbprints have the same overall ridge structure:

p1 =
∑
i∈C1

p2
c1(i) = .00044. (2)

Level-Two Detail Matching
If we disregard the infrequent dot minutiae, we obtain the probability

pc2(j) = (δ2λ)k(1 − δ2λ)C−Kpkb

b pk−kb
t

1
2k

for a configuration j with k minutiae, kb of which are bifurcations (and the rest
ridges), placed in C = XY/wδ2 cells. If we simplify minutia-type frequencies
to pb = pt = 1/2, and note that there are(

C

k

)(
k

kb

)
2k

ways to configure j given k and kb, the total probability of a match becomes

p2 =
C∑

k=0

k∑
kb=0

(
(δ2λ)k(1 − δ2λ)C−K 1

4k

) (
C

k

)(
k

kb

)
2k

=
C∑

k=0

(δ2λ)2k(1 − δ2λ)2(C−k) 1
4k

(
C

k

)

=
(

5(δ2λ)2 − 8δ2λ + 4
4

)C

.

Match probabilities for λ = 0.13 ± 0.03/mm, δ2 = 1 mm, and C = 250 to 400
cells range from 2.9 × 10−23 to 9.8 × 10−60; probabilities for the more realistic
values λ = 0.05± 0.03/mm, δ2 = 2–3 mm, and C = 100 to 250 cells range from
3.7 × 10−5 to 1.7 × 10−47.

Historical Uniqueness of Fingerprints
Denote the probability of a match of any two left thumbprints in the history

of the human race by p and the world total population by N . The probability
of at least one match among

(
N
2

)
thumbprints is

P = 1 − (1 − p)(
N
2 ).

Figure 4a illustrates the probability of at least one match for N = 1011, while
Figure 4b shows a log-log plot of the probability for very small p-values. Since
even conservative parameter values in the ideal case give p � 10−30, our model
solidly establishes uniqueness of fingerprints through history.
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Figure 4a. For N = 1011, probability of at
least one thumbprint match through history.
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Figure 4b. Log-log plot of probability.

Strengths and Weaknesses of the Model

Strengths
• Topological coordinate system: We take topological considerations into

account, as demanded by Stoney and Thornton [1986].

• Incorporation of ridge structure detail: We use this in addition to the minu-
tiae detail that is the primary focus of most other models.

• Integration of nonuniform distributions: We allow for more-complex dis-
tributions of the ridge structure parameters, such as Gaussian distributions
for singularity locations, and we consider that distribution of minutiae along
ridges may depend on the location of the ridge in the overall structure.

• Accurate representation of minutia type and orientation: We follow mod-
els such as those developed by Roxburgh and Stoney in emphasizing the
bidirectional orientation of minutiae along ridges, and we further consider
the type of minutiae present as well as their location and orientation. Cruder
models of minutiae structure [Osterburg et al. 1977; Pankanti et al. 2002] ne-
glect some of this information.

• Flexibility in parameter ranges: We test a range of parameters in both ideal
and practical scenarios and find that the model behaves as expected.

Weaknesses
• Ambiguous prints, smearing, or partial matches: We assume that ambigui-

ties in prints reflect ambiguities in physical structure and are not introduced
by the printing. This is certainly not the case for actual fingerprints.

• Domain discontinuities: We have no guarantee of continuity between re-
gions of flow; continuity requirements may affect the level-one matching
probabilities significantly.
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• Nonuniform minutia distribution: We assume that the distribution of minu-
tiae along a ridge is uniform. However, models should account for variations
in minutiae density and clustering of minutiae [Stoney and Thornton 1986].
Although we have a mechanism for varying this distribution, we have no
data on what the distribution should be.

• Left/right orientation distribution: We assume that the distribution of minu-
tiae orientation is independent and uniform throughout the print. Amy
notes, however, that the preferential divergence or convergence of ridges
in a particular direction can lead to an excess of minutiae with a particular
orientation [Stoney and Thornton 1986].

• Level-three information: We neglect level-three information, such as pores
and edge shapes, because of uncertainty about its reproducibility in prints.

Comparison with DNA Methods

DNA Fingerprinting
The genetic material in living organisms consists of deoxyribonucleic acid

(DNA), a macromolecule in the shape of a double helix with nitrogen-base
“rungs” connecting the two helices. The configurations of these nitrogen bases
encode the genetic information for each organism and are unique to the organ-
ism (except for identical twins and other cases in which an organism splits into
multiple separate organisms(.

Direct comparison of base-pair sequences for two individuals is infeasible,
so scientists sequence patterns in a person’s DNA called variable number tandem
repeats (VNTR), sections of the genome with no apparent genetic function.

Comparison of Traditional and DNA Fingerprinting
While level-two data is often limited by print quality, we expect level-one

detail to remain relatively unchanged unless significant sections of the print
are obscured or absent. We use p1 = 10−3 from (2), allowing for a conservative
loss of seven-eighths of the level-one information. Multiplying by this level-one
factor 10−3, all but the three worst probabilities are less than 10−9.

DNA fingerprinting has its flaws: False positives can arise from mishan-
dling samples, but the frequency is difficult to estimate. The probability of two
different patterns exhibiting the same VNTR by chance varies between 10−2

and 10−4, depending on the VNTR [Roeder 1994; Woodworth 2001]. The total
probability of an individual’s DNA pattern occurring by chance is computed
under the assumption that the VNTRs are independent, which has been verified
for the ten most commonly used VNTRs [Lambert et al. 1995].
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Results and Conclusions
We present a model that determines whether fingerprints are unique. We

consider both the topological structure of a fingerprint and the fine detail
present in the individual ridges. We compute probabilities that suggest that
fingerprints are reasonably unique among all humans who have lived.

Fingerprint evidence compares well with DNA evidence in forensic settings.
Our model predicts that with even a reasonably small fingerprint area and
number of features, the probability that a match between a latent print and a
suspect’s print occurs by chance is less than 10−9. Both DNA evidence with few
VNTRs and fingerprints of poor quality with few features can give inconclusive
results, resulting in uncertainty beyond a reasonable doubt.
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