
Summary

For over a century, fingerprints have been a nearly undisputed personal
identifier, and have consequently found much practical use in criminal in-
vestigations. The 1993 Daubert v. Merrill Dow Pharmaceutical rulings that
clarify what constitutes scientifically admissible evidence have sparked a
new interest in verifying that fingerprints are truly unique from person
to person. Consequently, we seek to develop a description of fingerprint
structure that is capable of a precise determination of the probability of du-
plicate fingerprints.

To provide a complete and realistic description of fingerprint structure,
our model must achieve the following objectives:

• Topological structure in the print determined by the overall flow of
ridges and valleys should be described accurately.

• Fine detail in the form of ridge bifurcations and terminations must
also be characterized accurately.

• Intrinsic uncertainties in our ability to reproduce and measure fin-
gerprint data must be considered.

• Definite probabilities for specified fingerprint configurations must
be calculated.

We place special emphasis on meeting the modeling criteria established by
Stoney and Thornton [1986] in their assessment of prior fingerprint models.

In addition to calculating estimates of the theoretical limit of fingerprint
differentiation and thereby the probability of print duplication in human
history, we apply our model to the more realistic conditions encountered
in forensic science to determine the legitimacy of current methodology. We
also compare the accuracies of DNA and fingerprint evidence on both prac-
tical and theoretical levels.

Given the theoretical limits of fingerprint identification, our model pre-
dicts uniqueness of prints throughout human history. Furthermore, we de-
termine that fingerprint evidence can be as valid as DNA evidence, if not
more so, although both depend on the quality of the forensic material re-
covered.
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1 Introduction

Many issues have motivated the development of reliable personal identi-
fication. Historically, identification has been important in verifying indi-
viduals’ claims of nationality, family membership, or socioeconomic sta-
tus. Additionally, establishment of identity is crucial for the reliability of
financial transactions. For example, in order to have credit at a bank, the
bank must be able to uniquely associate each bank account with one per-
son. Moreover, identity verification has applications in the legal system. In
particular, reliable identification of criminals allows for greater efficiency
in solving crimes, and the recognition and capture of repeat offenders.

Suppose that an investigator at a crime scene discovers a perfect imprint
of a right thumb on a wall. According to popular wisdom, that thumbprint
belongs to one, and only one, person in the history of the world. If a sus-
pect is found with a thumbprint which matches the print left on the wall,
then the investigator is reasonably assured of the suspect’s presence at the
crime scene. How correct are we to believe, however, that fingerprints are
unique? Can the fingerprints humans leave behind be used reliably for
identification? How do fingerprints compare with other methods of iden-
tification? In this paper we address these questions with a mathematical
model of fingerprint structure.
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1.1 Identity and Biometrics

Personal identity can be confirmed in modern societies in a number of
ways, including secret knowledge (PIN numbers or passwords), posses-
sion of unique objects (passports or drivers’ licenses), behavioral features
(signature), or physical or physiological features (fingerprints). Whereas
knowledge and objects may be easily transferred to someone else and be-
havior may be imitated with practice, certain physical body features are
difficult or impossible to alter, making impersonation much more difficult.
Such unalterable physical features are frequently referred to as biometrics.

Biometric measurements have been employed for identification for cen-
turies in many different forms. Perhaps the first known usage of biomet-
rics comes from 14th-century China, where impressions of infant hand- and
footprints were taken (NCSC). In Europe, artificial biometrics such as tat-
toos and scars have also been used to keep track of criminals and to record
what crimes they had committed. While such methods were certainly ef-
fective, humanitarian concerns render them unacceptable today. By the late
19th century, criminals were identified under the system of bertillonage,
which uses body measurements such as arm and finger lengths as identi-
fying characteristics. A 1903 incident at Fort Leavenworth demonstrated,
however, that bertillonage could yield the same set of measurements to
within uncertainty for two separate people and was therefore a flawed sys-
tem of identity verification (NCSC).

Modern times present many possible biometrics that can be used to de-
termine or confirm a person’s identity, including retinal or iris features,
DNA testing, hand geometry, vascular patterns, facial recognition, speech,
and signature (NCSC). Of these, only fingerprints and DNA are recoverable
from the traces humans unintentionally leave in their environment, and
therefore constitute the two major biometrics of interest to the forensic sci-
ences. As with all biometrics, each has its advantages and disadvantages.
For example, fingerprints can differentiate between identical twins (Prab-
hakar [2001]) while DNA testing cannot. Conversely, latent fingerprints
can be extremely difficult to lift accurately and often yield only partial or
smudged prints, but DNA evidence contains all of the available informa-
tion in those cases in which it can be recovered.

1.2 What is a Fingerprint?

A fingerprint is any two-dimensional pattern created by the friction ridges
present on human fingers (Ridges and Furrows). While the human skin is
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mostly smooth, the hands and feet present small ridges and valleys that
increase traction. Such ridges are believed to form during the embryonic
stages of human development and to persist unchanged throughout a per-
son’s lifetime. The physical ridge structure appears to depend chaotically
on factors such as genetic makeup and embryonic fluid flow (Prabhakar
[2001]).

When one’s finger is pressed in a fluid such as ink or blood and then
onto another surface, only the friction ridges touch the surface and thereby
transfer to it a two-dimensional representation of their structure. Sweat and
oils secreted onto the surface of the skin are also sufficient to leave behind
fingerprints.

Fingerprints are distinguished from each other on three levels of de-
tail (Beeton). The first level considers characteristics such as the overall
ridge flow and scarring patterns. This level of detail is very difficult to
quantify precisely and therefore is insufficient for accurate discrimination
of all prints. It is, however, the easiest detail to examine qualitatively. The
second level of detail considers the individual ridges and their bifurcations,
terminations, and other discontinuities. These ridge features, called minu-
tiae, afford a much more precise means of comparing fingerprints. In par-
ticular, the pairwise locations and orientations of the up to 60 minutiae
typically present on a full print provide a wealth of opportunities for de-
tailed comparison (Pankanti et al. [2002]). The third level of detail consid-
ers the width of the ridges, placement of pores, and other intra-ridge fea-
tures. Such detail is frequently missing from all but the best of fingerprints,
making it generally unavailable outside of a controlled environment, and
is extremely difficult to quantify.

1.3 Fingerprints As Evidence

Since the late 19th century, forensic scientists have used the level one and
two detail in latent fingerprints to match criminal suspects with crime scenes.
For over a century, fingerprint evidence has been used without major chal-
lenge in courts of law in the United States (OnIn.com) to identify and con-
vict countless numbers of criminals. In 1993, however, in Daubert v. Merrill
Dow Pharmaceutical, the U.S. Supreme Court set standards that potential
evidence must meet in order to be admissible as “scientific” evidence:

“1. The theory or technique has been or can be tested.

2. The theory or technique has been subjected to peer review
or publication.
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3. The existence and maintenance of standards controlling
use of the technique.

4. General acceptance of the technique in the scientific com-
munity.

5. A known potential rate of error.”

(Wayman [2000])

In the wake of Daubert, six federal trial judges have concluded that
handwriting analysis does not meet the Daubert criteria and thus cannot
be admitted as scientific evidence (Epstein [2002]). Many defense attorneys
are now trying to challenge the scientific authenticity of fingerprint evi-
dence in similar hearings, making the individuality of fingerprints and the
accuracy of fingerprint analysis particularly salient today.

1.4 Individuality of Fingerprints

Without access to the thumb of every person who has ever existed and
the time and ability to compare them pairwise to each other, it is impossi-
ble to determine whether fingerprints are truly unique in human history.
Nevertheless, many people have addressed the individuality issue, most
frequently by estimating an upper bound for the probability that any given
fingerprint configuration occurs in nature. From these probabilities and
from estimates of the total human population throughout history, the prob-
ability of two thumbprints being unique up to uncertainties in measure-
ment can be estimated. If this probability is sufficiently small, then support
is lent to the claim that fingerprints are indeed unique, and thus should be
considered by the courts as scientific evidence.

Francis Galton’s 1892 study is the first widely known extensive scien-
tific examination of fingerprints. Galton derives an estimate of this con-
figuration probability by dividing the fingerprint into squares with a side
length of six ridge periods. After some experimentation, he estimates he
can recreate the ridge structure of any given missing square with a proba-
bility of 1

2 . Assuming, then, that each square is independent and introduc-
ing some additional multiplicative factors, Galton concludes that the prob-
ability of any given fingerprint occurring is 1.45× 10−11, which stands as
one of the higher estimates in the history of such models. Pearson later
refines Galton’s crude model by considering minutiae more carefully and
finds a probability of 1.09× 10−41 (Stoney and Thornton [1986]).

In his 1933 model, Roxburgh employs a polar coordinate system to
specify minutiae location by discrete ridge number and minutiae order
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along a ridge. Roxburgh also adds in factors to account for poor image
quality, minutiae ambiguity, and ridge count ambiguity to arrive at a prob-
ability of any given 35-minutiae configuration to be 5.98 × 10−46. Amy’s
1947 model, like Roxburgh’s, considers minutiae ordering and orientation
along ridges, but focuses on relative rather than absolute positioning of
minutiae. Amy also corrects for clusters of minutiae in a line that can be
treated as their own ridge (Stoney and Thornton [1986]).

In his 1977 model, Osterburg extends Galton’s approach by dividing the
fingerprint into cells that can each contain one of 12 minutiae types. Based
on his empirical measures of minutiae type frequency and his assumption
of independence among different cells, Osterburg calculates the probability
of any given configuration to be 1.33 × 10−27. In his 1979 paper, Sclove
extends Osterburg’s model to take into account dependencies between cells
and the presence of multiple minutiae in a single cell (Stoney and Thornton
[1986]).

Stoney’s 1986 critique of these and other models charges that, despite
the variety of techniques, assumptions, and premises employed to deter-
mine these upper bounds on the configuration probabilities, all of these
models fail to consider a number of key issues completely, such as

• the topological information conferred through level-one detail,

• descriptions of minutiae location,

• minutiae orientation,

• minutiae type,

• variations in fingerprints taken from the same source, and

• number of positions considered per comparison.

In our model of fingerprint structure, we endeavor to correct at least
some of these omissions of important structural data.

2 Our Model: Assumptions and Constraints

2.1 Assumptions

In order to model fingerprint structure realistically, we must make a num-
ber of assumptions. These include the following:
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• Fingerprints are persistent: they remain the same throughout a per-
son’s lifetime. Law enforcement agencies and judicial bodies typ-
ically assume persistence of prints; in fact, their utility in criminal
cases and identification systems stems directly from this temporal
consistency. Francis Galton’s early studies (Galton [1892]) establish
this print persistence, and in recent times it has been verified by more
detailed comprehension of the processes that underlie the develop-
ment of dermal tissues (Ridges and Furrows).

• Fingerprints are of the highest possible quality and are positioned
consistently with respect to the global structure of the print. Since
we desire to model the structure of the fingerprint itself, free from
complicating factors, we must assume we are working with repre-
sentations of the best possible quality. Furthermore, because we wish
that two prints differing only by an overall rotation be considered
the same, we assume that we can translate and rotate a print within
reasonable extents.

• Each human fingerprint consists of a pattern of ridges with at least
some degree of continuity and flow. Empirically, all natural finger-
prints have been observed to exhibit systems of parallel ridges that
flow together in a distinctive pattern. While environmental factors
such as abrasion and injury may affect these structures, our best-
quality assumption implies that the print is taken from the physical
pattern that would develop independently of such damage.

• The ridge structure of each fingerprint unambiguously places it
into one of five categories: Arch, Left Loop, Right Loop, Tented
Arch, or Whorl. These five classes are those employed in the auto-
matic classification system developed by Cappelli et al. [1999], and
derive from the systems used by the FBI and by NIST (Watson and
Wilson [1992]). Furthermore, following the approach of Cappelli et al.
[1999], we assume that each class of print has associated with it a char-
acteristic ridge flow topology, which we can break into homogeneous
domains in which the flow is approximately unidirectional.

While Cappelli et al. [1999] raises the issue of prints that are “unclassi-
fiable,” even by experts, and both Cappelli et al. [1999] and Marcialis
et al. [2001] demonstrate confusion between classes of ridge struc-
tures in their automatic classification, we assume that such ambigui-
ties stem more from imperfections in print quality than in topological
defects or anomalies in the print structure. Regardless, the relative
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rarity of these problematic prints indicates that we should be able to
cover the majority of possible prints with these five broad classes.

• Fingerprints may further be distinguished by the location and ori-
entation of minutiae relative to local ridge flow. Equally as impor-
tant as ridge structure in classifying prints is the location and orienta-
tion of minutiae on ridges. Stoney and Thornton [1986] argue that the
ridges define a natural coordinate system across and along the ridges,
and that the location of a minutia can be specified with a ridge num-
ber and a linear measure along that ridge. Finally, minutiae can have
exactly one of two equally likely, fundamentally distinct orientations
along a ridge.

• Each minutia can be classified as either a bifurcation, a termination,
or a dot. While Galton [1892] identifies 10 basic minutiae structures,
and while more modern authors such as Osterburg et al. [1977] ex-
tend these to up to 13 different classes of minutiae, we follow Stoney
and Thornton [1986] and Pankanti et al. [2002] in arguing that the
fundamental minutiae are bifurcations, terminations, and dots (see
Figure 1 for illustrations), and that all other significant minutiae are
compositions of these basic three. We also feel comfortable ignoring
more complex minutiae because of their low rates of occurrence com-
pared to those of simple bifurcations and terminations (Osterburg
et al. [1977]).

Bifurcation

Ending Ridge

Dot

Figure 1: Galton’s illustrations of the three basic minutiae types (from Gal-
ton [1892]). In this paper, we refer to ending ridges as terminations.

• Any particular physical ridge structure will produce an unambigu-
ous fingerprint, within the limits of some level of visual resolu-
tion. While Stoney and Thornton [1986] point out that a given fin-
ger’s ridge structure in general produces a variety of print representa-
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tions, this variation is present primarily in the prints’ geometric data,
such as ridge spacing, curvature, and location of minutiae along a
ridge. This variation then justifies a degree of uncertainty in the loca-
tion of minutiae within a particular ridge system. On the other hand,
topological data such as ridge counts and minutiae orientation and
ordering is robust to such variation, and it is therefore reasonable to
assume that these structures will be replicated consistently from print
to print.

A more serious consideration is possible connective ambiguities, such
as when a given physical minutia is represented sometimes as a bi-
furcation and sometimes as a termination. Ideally, a model would
account for the possibility of confusion among minutiae type. Since
we assume the highest possible quality two-dimensional representa-
tion of the physical ridge structure, however, we feel safe in asserting
that the majority of minutiae are consistently reproduced correctly,
and that ambiguities arise only in cases where the physical structure
itself is ambiguous.

• Location and orientation of minutiae relative to each other is in-
dependent. Stoney and Thornton [1986] indicates that some depen-
dency exists between positions of minutiae, and Sclove [1979] explic-
itly considers such dependency in a Markov-type process. Neverthe-
less, we feel that it is enough in this model to consider the minutiae
structure as an independent process, although the incorporation of
such dependence constraints can be looked at as an possible exten-
sion.

• Ridge widths are uniform throughout the print and among differ-
ent prints, and ridge detail such as pores and edge shapes will not
be considered significant. Keeping ridge widths uniform simplifies
the geometric consideration of the ridge structure considerably and is
reasonably consistent with empirical observations. While such ridge
detail is potentially useful in further differentiating prints, we have
few statistics about their types and frequencies available to incorpo-
rate into a model. Furthermore, the finer the detail in these struc-
tures, the less likely is it to reproduce reliably in a print: edge and
ridge widths, for example, may change appreciably with variations
in pressure and ink coating.

• Frequencies of ridge structure classes and configurations and minu-
tiae types do not change appreciably with time. We must assume
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this invariance of print structure frequencies if the probabilities gen-
erated by our model are to apply throughout human history. Depend-
ing on the results and sensitivity of our model, however, it may be
possible to relax such assumptions and still retain what conclusions
we can draw from the model.

2.2 Constraints

These assumptions imply a set of constraints that our model must fulfill to
give a satisfactory description of a fingerprint’s structure. Such constraints
include the following:

• Our model must consider both ridge structure and relative posi-
tion, orientation, and type of minutiae in order to describe a finger-
print completely. To leave out minutiae from our model gives only
a very broad characterization of the print structure, while to leave
out ridge structure dismisses vital topological information about the
print. Therefore, we must construct our model to replicate both levels
of print information.

• Locations of minutiae must be specified only to within some un-
certainty dependent on the inherent uncertainty in feature repre-
sentation. As stated above, even under ideal circumstances, a physi-
cal characteristic of the ridge skin may be represented in a variety of
ways, leading to an intrinsic uncertainty in the corresponding print
structure. Our model must incorporate this fundamental uncertainty
into its description of the print structure.

• Given a particular configuration of ridge flow and minutiae on a fin-
gerprint, our model must determine the probability that this config-
uration occurs. If we are to use this model to estimate the theoretical
and practical limits of the individuality of fingerprints, we must as-
sociate to any given print configuration a probability that it occurs
naturally within the human population. Such probabilities will ulti-
mately allow us to compute the probability that a given print is pro-
duced twice in a population.

3 Model Formulation

Given these assumptions and constraints, our goal is to develop a model
that associates a probability with any given configuration of ridge struc-
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ture and minutiae location, orientation, and type within a thumbprint. By
summing these probabilities appropriately over the configuration space
for prints, we can estimate the probability that two distinct humans in
history will have physical ridge structures that produce indistinguishable
thumbprints.

In order to determine the overall probability of a given configuration,
we examine the following hierarchy of probabilities:

• the probability that the given class of ridge structure occurs,

• the probability that the ridge structure occurs in the specified config-
uration of ridge flow regions, and

• the probability that minutiae are distributed as specified throughout
the regions.

We further break this last probability down into a composition of the fol-
lowing region-specific probabilities:

• the probability that a region will contain the specified number of
minutiae,

• the probability that the minutiae within this region follow the speci-
fied spatial configuration, and

• the probability that the minutiae occur with the specified types and
orientations.

We now analyze these probabilities in more detail.

3.1 Probability of Ridge Structure Class

We first discuss the probabilities associated with the occurrence of each
class of ridge structure. As stated above, we consider five basic classes of
ridge structures: Arches, Left and Right Loops, Tented Arches, and Whorls.
To each class, we associate a particular probability of occurrence, which we
estimate from statistical analyses of frequency among the population. We
denote these probabilities νA, νL, νR, νT, and νW .

3.2 Probability of Ridge Structure Configuration

We base our description of ridge structure configuration on the classifica-
tion developed by Cappelli et al. [1999]. In this model, each print is par-
titioned into regions in which the overall flow is relatively unidirectional,



Team # 674 Page 12 of 32

and the class of the print determined from the comparison of this partition
to five prototypical masks. We consider these masks to be fundamentally
characteristic of each ridge structure class. The variations of flow region
structure within each class then depend on a small number of parame-
ters derived from key features characteristic to each class. For example,
the ridge structure of a Loop print can typically be determined from the
locations of the triangular singularity and the core of the loop. Figure 3
illustrates these locations. To determine the probability of a particular re-
gion configuration, then, we need only determine the probability that these
associated parameters occur as specified.

Because there is some degree of uncertainty in the physical measure-
ment of these configuration parameters, we discretize our parameter space
based on this fundamental resolution limit. We denote this limit as δ1,
where the subscript indicates that it pertains to level-one print features. We
then associate to each compartment in parameter space the probability that
the parameter lies within that compartment. In general, we employ inde-
pendent Gaussian distributions about the mean values for each parameter
to determine these probabilities.

We now detail the parameter spaces for each ridge structure class. The
use of these prototypes requires us to define a rectangular region of width
X and height Y within the print. Figure 2 depicts the prototypical regions
and their associated parameters. Figure 3 depicts the application of some
prototype masks to specific fingerprints.

3.2.1 Arch

The variable parameters for the Arch consist of the Cartesian coordinates
(x, y) of the lower corner of the left region, the height h of the central cor-
ridor, and the four angles θ1,θ2,θ3,θ4 at the inner corners of the left and
right regions. We also consider as fixed the width b of the central corridor.
We note that the ratio of the resolution limit δ1 to the mean length of a typi-
cal segment determines the uncertainty in the angular measurement of that
segment.

3.2.2 Loops, Left and Right

Since Left and Right Loops are identical except for a horizontal reflection,
we can use the same parameter space to characterize both classes. The
two principal features of the loop structure are the position (x, y) of the
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Figure 2: The prototypical region structures and parameters for each ridge
structure class, derived from the masks in Cappelli et al. [1999].

triangular singularity outside the loop and the distance r and angle θ of the
core of the loop relative to this triangular singularity.

3.2.3 Tented Arch

The major structure in the Tented Arch class is the arch itself. The parame-
ters associated with this class are therefore the position (x, y) of the base of
the arch and the height of the arch h.
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Figure 3: The prototypical region structures applied to an Arch, a Right
Loop, and a Whorl.

3.2.4 Whorl

The Whorl structure presents four major features that determine its struc-
ture. One of these is the center of the whorl itself, whose position is denoted
by (xC, yC). The next is the base of the whorl, at position (xB, yB). The two
other points are the triangular singularities to the left and right of the base
of the whorl, at positions (xL, y:) and (xR, yR). We further assume that the
center of the whorl and the base lie between the two singularities, so that
xL ≤ xC and xB ≤ xR, and that the base of the whorl lies above the singu-
larities, so that yB ≥ yL and yB ≥ yR.

3.3 Probabilities of Intra-Region Minutiae Distribution

We now discuss how minutiae are distributed within each unidirectional
flow region. Since the geometry of each region is uniquely determined by
the configuration parameters, given parameter values we can divide each
region up into a series of parallel ridges. While in practice ridges within
a region bifurcate and terminate and therefore deviate from this parallel
structure to some extent, assuming a consistent structure throughout con-
fers a regular coordinate system for placement of minutiae. As a conse-
quence of this parallel division, we can represent the ridge structure of the
region as a list of ridge lengths.

As in the analysis of the ridge structure parameters, we assume we have
some fundamental limit δ2 to our resolution of the position of minutiae
along a ridge. Consequently, we divide each ridge into a series of cells
of length δ2, in which we assume we find no more than one minutia. An
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expression for the probability PTC(n, l, k) that the nth ridge in the partition,
with length l, has a particular configuration of k minutiae is then

PTC(n, l, k, . . . ) = Pp(n, k, l)Pc(n, k, l)Pto({ki, pi, oi}), (1)

where Pp is the probability that k minutiae occur on this ridge, Pc the prob-
ability that these k minutiae are configured in the specified pattern on the
ridge, and Pto the probability that these minutiae are of the specified types
and orientations, indexed by i and occurring with type probability pi and
orientation probability oi. In general, these probabilities may depend on n,
the ridge number within the region. We now discuss more specific expres-
sion for these probabilities.

3.3.1 Probability of Minutiae Number

Under the assumption that minutiae occur at uniform rates along a partic-
ular ridge, we expect a binomial distribution for the number of minutiae on
the ridge. Suppose that the linear minutiae density, which may depend on
the ridge number n, is denoted λ(n). Then the probability that a minutiae
occurs in a given cell of length δ2 is given by δ2λ(n). Thus, the probability
that k minutiae occur is

Pp(n, k, l, λ) =
(

l/δ2

k

)
(δ2λ)k(1− δ2λ)l/δ2−k. (2)

3.3.2 Probability of Minutiae Configuration

Assuming that all configurations of minutiae are equally likely along the
ridge, the probability that these k minutiae occur in the specified configu-
ration is the inverse of the number of possible configurations, so that

Pc(n, k, l) =
1

(l/δ2
k )

. (3)

3.3.3 Probability of Minutiae Type and Orientation

The probability that the minutiae occur with specified types and orienta-
tions is then

Pto({ki, pi, oi}) = ∏
i

pki
i oki

i . (4)
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Applying our assumption that the only level-two features are bifurcations,
terminations, and dots, and that orientations are equally likely and inde-
pendent along the ridge, this expression reduces to

Pto = pkb
b pkt

t pkd
d

1
2kb+kt

(5)

such that kb + kt + kd = k. Then the total probability for the ridge configu-
ration is

PTC(n, l, k, λ, {ki, pi, oi}) = (δ2λ)k(1− δ2λ)l/δ2−k pkb
b pkt

t pkd
d

1
2kb+kt

. (6)

The total probability that minutiae are configured as specified through the
entire print is then product of the PTCs for all ridges in all domains, since
we assume ridges develop their minutiae independently.

Applying the additional assumption that λ and other factors do not de-
pend on n and are therefore uniform throughout the print, we can collapse
these multiplicative factors and develop an expression for the configura-
tion probability of the entire print:

Pglobal
TC = (δ2λ)K(1− δ2λ)L/δ2−K pKb

b pKt
t pKd

d
1

2Kb+Kt
. (7)

Here, K is the total number of minutiae in the print, Ki the number of type
i, and L is the total linear length of the ridge structure in the print. We note
that L is determined only by the total area XY of the print and the average
ridge width w and is therefore independent of the topological structure of
the print.

4 Parameter Estimation

Before we can accurately calculate probabilities for fingerprint configura-
tions, we must determine values for the many parameters in our model.
Lacking the resources to investigate a number of these parameters inde-
pendently, we instead elect to use values in published papers when avail-
able and to make estimates based on a limited investigation of the NIST-4
database.

4.1 Level One Parameters

We group our parameters by the level of detail that they describe. We begin
with the parameters that describe the details of ridge flow.
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• Level One Spatial Resolution Limit δ1: Cappelli et al. [1999] dis-
cretize their images into a 28 by 30 grid to determine the level one
detail. From these grid dimensions, the approximate physical dimen-
sions of the fingerprints, and the assumption that there is an uncer-
tainty of three blocks for any level-one feature, we estimate the natu-
ral length level-one-feature resolution limit to be δ1 = 1.5 mm.

• Level One Angular Resolution Limit δθ: Taking X/2 = 5.4 mm (de-
termined below) as a typical length scale, we have δθ = δ1/(5.4 mm),
making δθ = .279 radians.

• Ridge Structure Class Frequencies νA, νL, νR, νT, and νW : We use
the estimates of the relative ridge structure class frequencies presented
in Prabhakar [2001], which we list in Table 1.

νA νL νR νT νW
0.0616 0.1703 0.3648 0.0779 0.3252

Table 1: Relative Frequencies of Ridge Structure Classes (from Prabhakar
[2001]).

• Thumbprint Width X and Height Y: Examining many thumbprints
from the NIST-4 database and comparing them with the area given
by Pankanti et al. [2002], we conclude that a width that will cover the
majority of the thumbprints is 212 pixels in the 500 dpi images, which
corresponds to a physical length of 10.8 mm. Similarly, we conclude
that Y = 16.2 mm.

• Arch Characteristic Parameters (x, y), h, b, θ1, θ2, θ3, and θ4: We re-
strict the parameter space for (x, y) to the lower half of the thumbprint
with horizontal margins of length b. We estimate b as 2.5 mm from
examination of Arch fingerprints in the NIST database and from Cap-
pelli et al. [1999]. This estimate places x ∈ (0 mm, 8.3 mm) and
y ∈ (0 mm, 5.6 mm). The average value for (x, y), which we need
to describe the distribution of (x, y) is then (4.2 mm, 2.8 mm). We
estimate that x and y both have a standard deviation of 0.7 mm. We
assume that θ1–θ4 are all restricted between 0 and 45 degrees with
average value 22.5 degrees with a standard deviation 5.13 degrees.

• Loop Characteristic Parameters (x, y), θ, and r: We determine pa-
rameters only for left loop, since the right loop is the horizontal reflec-
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Arch Parameter Ranges
(x, y)/mm (4.2, 2.8)± (0.7, 0.7)

h/mm 4.05± 0.7
b/mm 2.5± 0

θ1–θ4/◦ 22.5± 5.13
Loop Parameter Ranges

(x, y)/mm (2.7, 2.8)± (0.7, 0.7)
θ/◦ 45± 15
r/mm 4.58± 0.7

Tented Arch Parameter Ranges
(x, y)/mm (5.4, 2.8)± (0.7, 0.7)

h/mm 4.05± 1.02
Whorl Parameter Ranges

(xL, yL)/mm (2.7, 4.1)± (0.7, 0.7)
(xC, yC)/mm (5.4, 12.2)± (0.7, 0.7)
(xR, yR)/mm (8.1, 4.1)± (0.7, 0.7)
(xB, yB)/mm (5.4, 4.1)± (0.7, 0.7)

Table 2: Parameter range estimates for the ridge structure classes.

tion of the left loop. We reason that (x, y) must lie in the bottom left
quadrant and that the average coordinate pair is (2.7 mm, 2.8 mm).
Additionally, we restrict θ to lie between 15 degrees and 75 degrees,
which allows us to estimate the average θ as 45 degrees with a stan-
dard deviation of 15 degrees. We estimate that r must be greater than
0 mm and less than 9.6 mm.

• Tented Arch Characteristic Parameters (x, y) and h: Along the y di-
rection we restrict the bottom of the arch (x, y) to lie in the bottom
half of the thumbprint.. We further estimate that x lies in the mid-
dle two-thirds of X. These assumptions yield x ∈ (1.8 mm, 9 mm)
and y ∈ (0 mm, 8.1 mm). Assuming a symmetric distribution of
(x, y) yields (x, y) = (5.4 mm, 2.8 mm) with a standard deviation of
0.7 mm in both directions. Logically, we place h between 0 mm and
Y/2 = 8.1 mm. Again, assuming a symmetric distribution in this pa-
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rameter space and a standard deviation of one-eighth the maximum
value yields h = 4.05 mm± 1.02 mm.

• Whorl Characteristic Parameters (xL, yL), (xC, yC), (xR, yR), and (xB, yB):
We expect (xL, yL) to be in the bottom left quadrant for all but the
most extreme examples and similarly (xR, yR) to lie in the bottom
right quadrant. We place (xB, yB) between x = X

4 and x = 3X
4 and

y = 0 and y = 2Y
3 . The topmost point, (xC, yC), we place in the top

half of the thumbprint. We again put the average values in the center
of their restricted areas.

The parameter range estimates for these four classes of ridge structures are
summarized in Table 2.

4.2 Level Two Parameters

Parameters associated with level-two details include the following.

• Level Two Spatial Resolution Limit δ2: With only minimal experi-
ence in comparing fingerprints, it is difficult to arrive at a reasonable
value for the spatial resolution limit. As a result, we use the value
given by Pankanti et al. [2002] for the spatial uncertainty of minutiae
location in 2-dimensions, r0, as an estimate for our δ2. We propose
δ2 = 1 mm as a value for best-case calculations. In practice, this value
may be as high as 3 mm because of the low quality of latent prints.

• Relative Minutiae Type Frequencies pd, pb, and pt: Osterburg pub-
lishes the relative frequencies of 12 different types of minutiae. Al-
most all of the the compound minutiae can be broken into a combi-
nation of bifurcations and terminations separated spatially. Counting
these compound minutiae appropriately, we determine these relative
minutiae frequencies, which are listed in Table 3.

pb pt pd
0.356 0.581 0.0629

Table 3: Frequencies of Simple Minutiae Types (from Osterburg et al.
[1977])

• Ridge Period w: We use Stoney’s value of 0.463 mm/ridge for the
ridge period, the distance from the middle of one ridge to the middle
of an adjacent ridge (Pankanti et al. [2002]).
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• Mean Number of Minutiae per Print µ: Under ideal circumstances,
we expect to be able to discern between 40 and 60 minutiae on an av-
erage print (Pankanti et al. [2002]), so we take µ = 50± 10. In prac-
tice, forensic specialists may be able to discern as few as 10 minutiae
from a latent print because of poor quality, so we take µ = 20 ± 10
when considering these conditions.

• Linear Minutiae Density λ: We calculate λ by dividing the average
number of minutiae per a thumbprint µ by the total ridge length of
a thumbprint XY/w. Under ideal conditions, this gives λ = 0.13 ±
0.03 minutiae/mm. In practice, we may have λ = 0.05± 0.03 minu-
tiae/mm (Pankanti et al. [2002]).

Finally, we estimate the total number of humans in the history of the planet.
We use the value given in Haub [2002], approximately 100 billion. Given
the number of approximations Haub makes in calculating this number, no
greater accuracy is warranted.

5 Model Analysis and Testing

Given two prints taken at random from the population, we wish to deter-
mine the probability that they present the same print structure. For each
point x in our print configuration space, the probability that each print has
that configuration is the probability of occurrence pc(x) for that configura-
tion. Assuming that the fingerprint patterns are distributed independently,
then, the probability the prints match is p2

c (x). Then the sum of these prob-
abilities as x ranges over the entire configuration space is the total proba-
bility of a match.

Operating under the assumptions described above, the probabilities as-
sociated with the two levels of detail are determined independently, so the
total occurrence probability factors into pc1(x1)pc2(x2). Denoting the level-
one configuration subspace as C1 and the level-two subspace as C2, the total
probability of the prints matching is

p = ∑
i∈C1

∑
j∈C2

(pc1(i)pc2( j))2 =

(
∑

i∈C1

p2
c1(i)

)(
∑

j∈C2

p2
c2( j)

)
= p1 p2. (8)

Thus, we can determine the probabilities that the prints’ level-one and
level-two structures match separately. This separation greatly increases
both the efficiency and accuracy of our computations.
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5.1 Level-One Detail Matching

To determine the level-one probabilities pc1(i) we wish to use Gaussian
distributions about the mean of each parameter. While we have crude es-
timates of the ridge structure parameters, they are not sufficiently refined
to provide an accurate estimate of these Gaussian distributions. Thus, we
make a simplifying assumption: we restrict each parameter to a region of
parameter space in which we would reasonably expect to find the param-
eter and assume that the parameter is uniformly distributed in that region.
This crude approximation does not provide the most precise determination
of the probability, but it does give us enough accuracy to get at least an es-
timate of the order of magnitude, which suffices for our analysis. Making
this assumption, we see that,

pc1(i) =
νi(

∏
j∈V(i)

L j
δ1

) (9)

where L j is the range of parameter j in V(i), the set of parameters for a type
i ridge structure. In order for Equation 9 to be accurate, we should make
any L j corresponding to angular parameters the product of the angle range
with our typical length of 5.4 mm. Note that the product is simply the total
number of compartments in our parameter space, since we are assuming a
uniform distribution in that range. Calculating this probability, pc1(i), for
each ridge structure type, and summing their squares, we find,

p1 = ∑
i∈C1

p2
c1(i) = .00044 (10)

This is the probability that any two thumbprints have the same overall
ridge structure.

5.2 Level-Two Detail Matching

Recalling that Equation 7 gives the probability of a particular minutiae con-
figuration, we note that if we disregard the relatively infrequent dot minu-
tiae and focus only on the more fundamental bifurcations and ridges, we
obtain the probability

pc2( j) = (δ2λ)k(1− δ2λ)C−K pkb
b pk−kb

t
1
2k (11)
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δ2λ 0.10 0.13 0.16
C = 250 2.9× 10−23 2.3× 10−30 1.3× 10−37

C = 300 8.9× 10−28 2.7× 10−36 5.5× 10−45

C = 350 2.7× 10−32 3.2× 10−42 2.3× 10−52

C = 400 8.5× 10−37 3.8× 10−48 9.8× 10−60

Table 4: Second-level match probabilities for C = 250 to 400 cells, λ =
0.13± 0.03/mm, and δ2 = 1 mm.

δ2λ 0.05 0.10 0.15 0.20
C = 100 3.7× 10−5 9.6× 10−10 1.6× 10−14 2.0× 10−19

C = 150 2.3× 10−7 3.0× 10−14 2.1× 10−21 8.6× 10−29

C = 200 1.4× 10−9 9.2× 10−19 2.8× 10−28 3.8× 10−38

C = 250 8.7× 10−12 2.9× 10−23 3.6× 10−35 1.7× 10−47

Table 5: Second-level match probabilities for C = 100 to 250 cells, λ =
0.05± 0.03/mm, and δ2 = 2–3 mm.

for a configuration j corresponding to k minutiae, kb of which are bifurca-
tions, placed in C = XY/wδ2 cells. If we further simplify our minutiae type
frequencies to be pb = pt = 1/2, and note that there are (C

k)(
k
kb
)2k ways to

configure j given k and kb, the total probability of a match becomes

p2 =
C

∑
k=0

k

∑
kb=0

(
(δ2λ)k(1− δ2λ)C−K 1

4k

)2 (C
k

)(
k
kb

)
2k (12)

=
C

∑
k=0

(δ2λ)2k(1− δ2λ)2(C−k) 1
4k

(
C
k

)
(13)

=
(

5(δ2λ)2 − 8δ2λ + 4
4

)C

. (14)

Table 4 displays the match probabilities obtained by taking λ = 0.13 ±
0.03/mm and δ2 = 1 mm and estimating C between 250 and 400 cells.
Table 5 displays the probabilities for the more realistic parameter values of
λ = 0.05± 0.03/mm, δ2 = 2–3 mm, and C = 100–250 cells.
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5.3 Historical Uniqueness of Fingerprints

Now that we have estimates of upper bounds for the probability of two
prints at random matching, we can estimate the probability that any two
left thumbprints in the history of the human race match. We focus specif-
ically on only the thumbprint of a particular hand in order to justify the
claim of independence between prints.

Suppose the probability of a match is denoted p and the total popula-
tion of the world N. Then the probability that at least one match occurs
among the (N

2 ) thumbprint comparisons that must be performed is given
by

P = 1− (1− p)(N
2 ). (15)

Figure 4 illustrates the probability of at least one match for N = 1011, while
Figure 5 shows a log-log plot of the probability for very small p-values.
For p below 10−30, the chance of a match between two thumbprints falls
below P = 10−8, at which point we can reasonably conclude that finger-
prints are unique throughout history. Since even conservative parameter
values in the ideal case give p � 10−30, our model solidly establishes such
uniqueness.

-26 -24 -22 -20 -18
log p

0.2

0.4

0.6

0.8

1
P

Figure 4: Probability of at least one thumbprint match through history, with
N = 1011.
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Figure 5: Log-log plot of the probability of a historical thumbprint match,
with N = 1011.

6 Strengths and Weaknesses of the Model

6.1 Strengths

In comparison to existing models of fingerprint structure and probability,
our model has several special advantages, which we detail below.

• Topological Coordinate System: One strength of our model is that
we take topological considerations into account in defining the place-
ment of minutiae within the print. Stoney and Thornton [1986] notes
that this natural ridge-based coordinate system should be a major
consideration of any proper model of fingerprint structure because
of the topological order it confers to the print. By explicitly consid-
ering the division of the print region into ridges, we build this order
into our model from the ground up.

• Incorporation of Ridge Structure Detail: Another key feature of our
model is that it uses the detail associated with the flow of ridges on
the print in addition to the minutiae detail, which is the primary fo-
cus of most other models that evaluate the individuality of prints. We
feel that these minutiae-driven models neglect important structural
elements in their analyses and thereby in many cases incorrectly esti-
mate the probability of print correspondence.

• Integration of Non-Uniform Distributions: We incorporate nonuni-
form distributions into our model in two key places: we allow for
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more complex distributions of the ridge structure parameters, such as
Gaussian distributions for singularity locations, and we consider that
distribution of minutiae along ridges may depend on the location of
the ridge in the overall structure. In addition, applying uniform dis-
tributions in their place allows us to recover the salient features of
other, less sophisticated models.

• Accurate Representation of Minutiae Type and Orientation: We fol-
low models such as those developed by Roxburgh and Stoney in em-
phasizing the bidirectional orientation of minutiae along ridges, and
we further consider the type of minutiae present as well as their lo-
cation and orientation. Cruder models of minutiae structure, such as
those developed by Pankanti et al. [2002] or Osterburg et al. [1977],
neglect at least some of this key information.

• Flexibility in Parameter Ranges Considered: Our model is suffi-
ciently robust to consider parameter ranges for both ideal and prac-
tical cases. Furthermore, we explicitly test a range of parameters in
both of these scenarios and find that the model behaves as expected
under these variations. We further expect stable behavior under vari-
ation of other parameter sets, including minutiae distributions and
ridge flow parameters.

6.2 Weaknesses

As is true of every model, our model has a number weak points, which we
address below. In particular, we emphasize the complicating features we
have elected not to incorporate into our model.

• Ambiguous Prints, Smearing, or Partial Matches: We assume that
any ambiguities in our prints reflect ambiguities in the physical struc-
ture of the finger and not those introduced by the creation of the two-
dimensional representation. As we discuss in our assumptions, this
is certainly not the case for actual fingerprints. Furthermore, we have
no explicit mechanism to account for smearing or other obscuring ef-
fects that arise in forensic situations, although adjustment of the effec-
tive print area and resolution limit parameter may suffice to replicate
these considerations. In the theoretical limit, however, we assume no
such ambiguities, so we can safely neglect their effects.

• Domain Discontinuities: One flaw in our representation of the ridge
flow structure is that we have no guarantee of continuity between re-
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gions of flow. Such continuity requirements places an additional con-
straint on the probabilities of ridge-flow configurations, which may
affect the level-one matching probabilities significantly.

• Nonuniform Minutiae Distribution: We explicitly assume that the
distribution of minutiae along a ridge is uniform. Stoney and Thorn-
ton [1986] points out, however, that models should account for varia-
tions in minutiae density across the print and that clustering of minu-
tiae occurs and may depend on the relative location of minutiae within
a print. Although we have a mechanism for varying this distribution
across ridge numbers, we currently have no data on what this distri-
bution should be.

• Left/Right Orientation Distribution: We automatically assume that
the distribution of minutiae orientation will be independent and uni-
form throughout the print. Amy notes, however, that the preferen-
tial divergence or convergence of ridges in a particular direction can
lead to an excess of minutiae with a particular orientation (Stoney
and Thornton [1986]). Ideally, a model would derive its orientation
distribution from analysis of the topology of the ridge flow.

• Level Three Information: As stated above, we neglect level three
information such as pores and edge shapes because of uncertainty
regarding its reproducibility in prints. It is conceivable that particu-
larly significant level-three information might remain consistent from
print to print, in which case it would be desirable to incorporate these
distinguishing details into the model.

• Continuous Distributions: We have chosen to discretize all of the
parameter spaces associated with the model, in part to incorporate
uncertainties naturally and in part to simplify computations. A more
accurate formulation may involve keeping some of these parameter
spaces continuous and integrating rather than summing over uncer-
tainty regions. Such calculations will almost certainly be more com-
plicated to carry out, however.



Team # 674 Page 27 of 32

7 Comparison with DNA Methods

7.1 DNA Fingerprinting

The genetic material in all living organisms consists of deoxyribonucleic
acid (DNA), a macromolecule in the shape of a double helix with nitrogen-
base “rungs” connecting the two helices. The different configurations of
these nitrogen bases encode the genetic information for each organism,
and, except for identical twins and other cases in which organisms effec-
tively split into multiple separate organisms, are unique from organism to
organism. Applied to humans, this uniqueness provides another method
of distinguishing one person from another. A naive approach to such ge-
netic comparison might involve direct comparison of base-pair sequences.
The approximately three billion base pairs in each person’s genome make
this process infeasible, however. Instead, scientists sequence patterns in
a person’s DNA called variable number tandem repeats (VNTR), which
are sections of the human genome that have no apparent genetic function.
Since VNTRs vary widely between individuals, they too provide a way to
differentiate between people through genetic material. This VNTR process
was first developed as an identification technique in England by Jeffreys
et al. [1995].

7.2 Constructing a DNA Fingerprint

A DNA “fingerprint” is constructed by first extracting a DNA sample from
body tissue, hair, or bodily fluids such as blood, semen, or saliva. The sam-
ple is then amplified by polymerase chain reaction and restriction enzymes
used cut the samples into smaller fragments. The segments are then sorted
by size using a process called electrophoresis. The VNTRs are marked with
radioactive probes and exposed on X-ray film, where they form a charac-
teristic pattern of black bars. This pattern constitutes the DNA fingerprint.
A sample DNA fingerprint from a rape case is displayed in Figure 6. The
highlighted marks are, from left to right, a VNTR sample from the defen-
dant, a VNTR ruler, and the VNTRs found in semen taken from the rape
victim. The matching VNTRs in the suspect’s sample and the semen sam-
ple support the claim that the semen originated from the defendant.

7.3 The Probability of a DNA Fingerprint

If the arrangement of VNTRs produced from two different samples match,
the two samples probably came from the same person. The probability
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Figure 6: Sample DNA fingerprint. Adams [2002]

of two different patterns exhibiting the same VNTR by chance varies be-
tween 10−2 to 10−4, depending on the VNTR (Roeder [1994], Woodworth
[2001]). The total probability of an individual’s DNA fingerprint occurring
by chance is computed under the assumption that the VNTRs are indepen-
dent. This independence has been verified for the ten most commonly used
VNTRs by Lambert et al. [1995]. By testing multiple VNTRs, the probabil-
ity of the tested configuration occurring by chance decreases dramatically.
For instance, the probability of the DNA profile obtained from the stain
on White House intern Monica Lewinsky’s dress occurring by chance is
reported to be 1 in 7.9 trillion (Adams [2002]).

7.4 Comparison of Traditional and DNA Fingerprinting

In order to compare the efficacy of DNA fingerprinting and traditional
fingerprinting, we estimate reasonable probabilities of fingerprint pattern
uniqueness in a forensic setting. While level-two data is often severely lim-
ited by the print quality, we expect level-one detail to remain relatively
unchanged unless significant sections of the print are obscured or absent.
As such, we use a value of 10−3 for p1 from Equation 10, allowing for a
very conservative loss of seven-eighths of the level-one information. Mul-
tiplying the entries in Table 5 by this level-one factor estimate of 10−3, we
observe that all but the three worst probabilities are less than one in a bil-
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lion.
Traditional fingerprinting relies on the expert ability of forensic scien-

tists at the crime scene to locate and lift prints from a variety of surfaces.
The quality and duration of a latent print depends upon the surface the
print was left on, as well as the humidity and temperature of the environ-
ment. While latent prints can last up to 40 years, this represents an extreme
value and a latent print may degrade after less than a week. Most finger-
prints are also extremely fragile and as a result are destroyed by contact
with any other surface. In most cases, only partial fingerprints can be re-
covered for analysis (OnIn.com).

DNA, on the other hand, is a very resilient molecule and consequently
can be quickly and completely recovered from a drop of dried blood, se-
men, or sweat. In older crimes where DNA from bodily fluids has de-
graded or is not available, it can still be extracted from human teeth and
bones.

DNA fingerprinting has its flaws, however. Most significantly, false
positives can arise by chance and by the mishandling of DNA samples.
Thompson [2003] reports one such error which led to the false conviction
of Timothy Durham for the rape of an 11-year-old girl. A DNA test showed
that Durham’s genotype matched that of the semen donor. The laboratory
had failed to completely separate male from female DNA during extraction
of the semen stain, however, and the combination of the VNTRs from the
victim and the rapist produced a fingerprint that matched Durham’s. Al-
though false positives can occur (Thompson [2003]), the rate at which they
occur is difficult to estimate on the basis of existing data.

8 Results and Conclusions

Until recently, fingerprint evidence had been used without major challenge
in courts of law in the United States. In 1993, however, scientific evidence
came under fire by the courts in the case of Daubert v. Merrill Dow Pharma-
ceutical. Recent court cases specifically threaten the validity of fingerprint
evidence and have renewed interest in whether fingerprint individuality
has scientific merit.

In this paper we present a model which determines whether finger-
prints are unique. We consider both the topological structure of a finger-
print and the fine detail present in the individual ridges. Furthermore, we
incorporate the uncertainties intrinsic in recording fingerprints and com-
pute definite probabilities which suggest that fingerprints are reasonably
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unique among all humans which have lived on Earth.
Fingerprint evidence compares well with DNA evidence in forensic set-

tings. Our model predicts that with even a reasonably small fingerprint
area and number of features, the probability that a match between a latent
print and a suspect’s print occurs by chance will be less than 1× 10−9. As
with DNA evidence with few VNTRs, however, fingerprints of poor qual-
ity with few features can give inconclusive results. Both sets of evidence
can result in uncertainties of false association that are too high to convict a
suspect beyond reasonable doubt.

Although it addresses many vital criteria, our model can nevertheless
be improved in several ways. For example, we assumed that minutiae are
distributed uniformly and are independent of the placement and orienta-
tion of neighboring minutiae. We could increase the accuracy of our model
by relaxing this assumption and including empirically observed distribu-
tions of minutiae. We assume that fingerprints are always of the highest
quality. To accurately predict whether a latent print matches a suspect’s
print, this model should consider more explicitly smearing, smudging, and
other image ambiguity and quality issues.
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