Decimation-in-frequency Fast Fourier Transforms for the Symmetric Group

Eric Malm

Presentation Days '05 Thesis Advisor: Michael Orrison Harvey Mudd College

02 May 2005

イロト 不得下 イヨト イヨト

Overview

1 The Discrete Fourier Transform

Signal Analysis Example Significance of DFT

2 Group-Theoretic DFTs

Symmetries and Groups Wedderburn's Theorem Generalized DFTs

B Fast Fourier Transforms for S_n

Decimation-In-Frequency FFTs Representation Theory of S_n Construction of Factorization

4 Computational Results

Signal Analysis Example Significance of DFT

Signal Analysis

The Setup

Suppose we want to analyze some periodic signal f

Signal Analysis Example Significance of DFT

Signal Analysis

The Setup

Suppose we want to analyze some periodic signal f

• Pick some full time period of f

Signal Analysis Example Significance of DFT

Signal Analysis

The Setup

Suppose we want to analyze some periodic signal f

- Pick some full time period of f
- Take N samples $f_0, f_1, \ldots, f_{N-1}$ of f in this time period

The Discrete Fourier Transform Group-Theoretic DFTs

Signal Analysis Example Significance of DFT

Discrete Fourier Transforms

 $\begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_{N-1} \end{pmatrix}$

• Process f_0, \ldots, f_{N-1} with the Discrete Fourier Transform

ヘロト ヘ部ト ヘヨト ヘヨト

<mark>Signal Analysis</mark> Example Significance of DFT

Discrete Fourier Transforms

$$\begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_{N-1} \end{pmatrix} \xrightarrow{\text{input}} \hat{f}_k = \frac{1}{N} \sum_{j=0}^{N-1} f_j e^{-2\pi i j k/N}$$

• Process f_0, \ldots, f_{N-1} with the Discrete Fourier Transform

イロン イロン イヨン イヨン 三星

<mark>Signal Analysis</mark> Example Significance of DFT

Discrete Fourier Transforms

- Process f_0, \ldots, f_{N-1} with the Discrete Fourier Transform
- Get *N* complex numbers $\hat{f}_0, \dots, \hat{f}_{N-1}$ such that

$$f(t) \approx \sum_{k=0}^{N-1} \hat{f}_k \left(\cos\frac{2\pi k}{N}t + i\sin\frac{2\pi k}{N}t\right)$$

<mark>Signal Analysis</mark> Example Significance of DFT

Discrete Fourier Transforms

- Process f_0, \ldots, f_{N-1} with the Discrete Fourier Transform
- Get *N* complex numbers $\hat{f}_0, \dots, \hat{f}_{N-1}$ such that

$$f(t) \approx \sum_{k=0}^{N-1} \hat{f}_k \quad \left(\cos\frac{2\pi k}{N}t + i\sin\frac{2\pi k}{N}t\right)$$

"pure" frequency
$$a \cdot \mathbf{r} \cdot \mathbf{t}$$

<mark>Signal Analysis</mark> Example Significance of DFT

Discrete Fourier Transforms

- Process f_0, \ldots, f_{N-1} with the Discrete Fourier Transform
- Get *N* complex numbers $\hat{f}_0, \dots, \hat{f}_{N-1}$ such that

$$f(t) \approx \sum_{k=0}^{N-1} \hat{f}_k \left(\cos \frac{2\pi k}{N} t + i \sin \frac{2\pi k}{N} t \right)$$

amplitude

Signal Analysis **Example** Significance of DFT

Example

Example

Our original signal is secretly the sum of three "pure" frequencies:

Signal Analysis Example Significance of DFT

Significance of the DFT

Time-Shift Invariance

Suppose we sampled our signal f over a different time period

- The samples f_0, \ldots, f_{N-1} could be much different
- But the Fourier coefficients $\hat{f}_0, \ldots, \hat{f}_{N-1}$ will not be

The DFT is therefore invariant under translational symmetry

Symmetries and Groups Nedderburn's Theorem Generalized DFTs

Symmetries and Groups

Symmetries and Groups

· Different spaces have different symmetries

Symmetries and Groups Nedderburn's Theorem Generalized DFTs

Symmetries and Groups

Symmetries and Groups

- Different spaces have different symmetries
- Write symmetries abstractly as groups

	Space		Symmetry		Group		
	time domain		time translations		$\mathbb{Z}/\mathbb{N}\mathbb{Z}$	-	
	sphere		rotations		SO(3)		
	lists		permutat	ions	S _n		
A B C	(13) →	C B A	<u>(132)</u> →	B A C	(23) 	B C A	a.r.t.
						문어 세문.	▶ 트 ∽੧<

Symmetries and Groups Nedderburn's Theorem Generalized DFTs

Group Algebras

Reformulation as Group Algebra

- Treat functions on spaces as functions on groups
- Rewrite functions on group as group algebra elements:

$$f: X \to \mathbb{C} \longrightarrow f: G \to \mathbb{C} \longrightarrow \sum_{g \in G} f(g)g$$

Symmetries and Groups Nedderburn's Theorem Generalized DFTs

Wedderburn's Theorem

Theorem (Wedderburn)

The group algebra $\mathbb{C}G$ of a finite group G is isomorphic to an algebra of block diagonal matrices:

$$\mathbb{C}G \cong \bigoplus_{j=1}^{h} \mathbb{C}^{d_j \times d_j}$$

Symmetries and Groups Nedderburn's Theorem Generalized DFTs

Generalized Discrete Fourier Transforms (DFTs)

Definition (Generalized DFT)

Any such isomorphism D on $\mathbb{C}G$ is a generalized DFT for G

- Coefficients in matrix *D*(*f*): generalized Fourier coefficients
- Blocks along diagonal: smallest CG-invariant spaces in CG

Change of Basis

DFT a change of basis into a symmetry-invariant basis

- Picking standard bases on CG, matrix algebra gives DFT matrix
- Naïve bound of O(|G|²) on complexity of DFT evaluation

Decimation-In-Frequency FFTs Representation Theory of S_n Construction of Factorization

Decimation-In-Frequency Fast Fourier Transforms (FFTs)

Decimation-In-Frequency FFT

• Fix chain of subgroups of G:

$$1 = G_0 < G_1 < \dots < G_{n-1} < G_n = G.$$

- Project into successively smaller subspaces in stages corresponding to subgroups
- Goal: Obtain sparse factorization of change-of-basis matrix D

S_n an Ideal Proof-of-Concept Group

Nonabelian, representation theory well understood, natural chain of subgroups

$$1 < S_2 < S_3 < \dots < S_n$$

イロト 不得下 イヨト イヨト

Decimation-In-Frequency FFTs Representation Theory of S_n Construction of Factorization

Representation Theory of S_n

Each block in matrix algebra for $\mathbb{C}S_n$ corresponds to a different non-increasing (proper) partition of n

Example ($\mathbb{C}S_3$)

Decimation-In-Frequency FFTs Representation Theory of S_n Construction of Factorization

Character Graph for $1 < S_2 < S_3$

Graded diagram of proper partitions for $1 < S_2 < \cdots < S_n$

Decimation-In-Frequency FFTs Representation Theory of S_n Construction of Factorization

Character Graph for $1 < S_2 < S_3$

Each pathway through the diagram corresponds to a filled-in partition and a row/column in matrix

Decimation-In-Frequency FFTs Representation Theory of S_n Construction of Factorization

Character Graph for $1 < S_2 < S_3$

Each pathway through the diagram corresponds to a filled-in partition and a row/column in matrix

Decimation-In-Frequency FFTs Representation Theory of S_n Construction of Factorization

Character Graph for $1 < S_2 < S_3$

A pair of paths ending at same diagram specifies a 1-D Fourier space

Decimation-In-Frequency FFTs Representation Theory of S_n Construction of Factorization

Construction of Factorization

Stages of Subspace Projections

- Partial paths give CS_n subspaces
- At stage for S_k, project onto these subspaces
- Build sparse factor from projections
- Full paths by stage for S_n

Decimation-In-Frequency FFTs Representation Theory of S_n Construction of Factorization

Construction of Factorization

Stages of Subspace Projections

- Partial paths give CS_n subspaces
- At stage for S_k, project onto these subspaces
- Build sparse factor from projections
- Full paths by stage for S_n

Factorization of $\mathbb{C}S_3$ DFT Matrix

Full DFT matrix for $\mathbb{C}S_3$:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & -\frac{3}{2} & \frac{3}{2} & \frac{3}{2} & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 1 & -1 & -1 & 1 & -1 & 1 \end{pmatrix}$$

イロン イロン イヨン イヨン 三星

Factorization of $\mathbb{C}S_3$ DFT Matrix

Three factors ($\mathbb{C}S_2$ on rows, $\mathbb{C}S_2$ on columns, $\mathbb{C}S_3$ on rows):

plus a permutation matrix and a row-scaling diagonal matrix

Factorization of $\mathbb{C}S_n$ DFT Matrices

Factorization of $\mathbb{C}S_n$ DFT Matrices

a.r.t.

・ロト ・御 ト ・ ヨト ・ ヨト

Results from Prototype Implementation

Prototype MATHEMATICA® Implementation

Can compute exact FFT up to n = 6

Operation Counts For Evaluation

п	t_n^{full}	t_n^{DIF}	t_n^{Maslen} [1]	$\frac{1}{2}n(n-1)$
3	4.7	2.7	2.7	3
4	18.8	5.3	5.4	6
5	87.9	8.8	9.1	10
6	486.4	13.8	13.6	15

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Future Directions

Theory

- Prove $O(n^2|S_n|)$ bounds on operation counts
- Deduce better bases for blocks in factors
- Relate FFT on S_n to FFTs on S_{n-1}

Implementation

- Improve efficiency of *MATHEMATICA*[®] implementation
- Port to MATLAB or GAP
- Parallelize decimation-in-frequency FFT algorithm

イロト 不得下 イヨト イヨト

References

[1] David K. Maslen.

The efficient computation of fourier transforms on the symmetric group. *Mathematics of Computation*, 67(223):1121–1147, July 1998.

[2] David K. Maslen and Daniel N. Rockmore.

Generalized FFTs - a survey of some recent results.

DIMACS Series in Discrete Mathematics and Computer Science, 28:183–237, 1997.

[3] Bruce E. Sagan.

The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions.

Wadsworth & Brooks/Cole, Pacific Grove, CA, 1991.

On The Web

Senior thesis website: (http://www.math.hmc.edu/~emalm/thesis/)

(日)