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Signal Analysis

The Setup
Suppose we want to analyze some periodic signal f

• Pick some full time period of f

• Take N samples f0, f1, . . . , fN-1 of f in this time period
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Discrete Fourier Transforms
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• Process f0, . . . , fN-1 with the Discrete Fourier Transform

• Get N complex numbers f̂0, . . . f̂N-1 such that
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N-1

â

k=0

f̂k

amplitude

Kcos
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Example

Example
Our original signal is secretly the sum of three “pure” frequencies:
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Significance of the DFT

Time-Shift Invariance
Suppose we sampled our signal f over a different time period

• The samples f0, . . . , fN-1 could be much different

• But the Fourier coefficients f̂0, . . . , f̂N-1 will not be

The DFT is therefore invariant under translational symmetry
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Symmetries and Groups

• Different spaces have different symmetries

• Write symmetries abstractly as groups

Space Symmetry

Group

time domain time translations

Z / NZ

sphere rotations

SO(3)

lists permutations

Sn
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---®
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B
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----®
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---®

B
C
A
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Group Algebras

Reformulation as Group Algebra

• Treat functions on spaces as functions on groups

• Rewrite functions on group as group algebra elements:

f : X ® C --® f : G ® C --® â
gÎG

f(g) g
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Wedderburn’s Theorem

Theorem (Wedderburn)
The group algebra CG of a finite group G is isomorphic to an algebra
of block diagonal matrices:

CG @
h
Å
j=1
C

dj´dj

Example (CS3)

CS3 @ C
1´1
Å C2´2

Å C1´1
=
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Generalized Discrete Fourier Transforms (DFTs)

Definition (Generalized DFT)
Any such isomorphism D on CG is a generalized DFT for G

• Coefficients in matrix D(f): generalized Fourier coefficients

• Blocks along diagonal: smallest CG-invariant spaces in CG

Change of Basis
DFT a change of basis into a symmetry-invariant basis

• Picking standard bases on CG, matrix algebra gives DFT matrix

• Naïve bound of O(|G|2) on complexity of DFT evaluation
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Decimation-In-Frequency Fast Fourier Transforms (FFTs)

Decimation-In-Frequency FFT

• Fix chain of subgroups of G:

1 = G0 < G1 < × × × < Gn-1 < Gn = G.

• Project into successively smaller subspaces in stages
corresponding to subgroups

• Goal: Obtain sparse factorization of change-of-basis matrix D

Sn an Ideal Proof-of-Concept Group
Nonabelian, representation theory well understood, natural chain of
subgroups

1 < S2 < S3 < × × × < Sn
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Representation Theory of Sn

Each block in matrix algebra for CSn corresponds to a different
non-increasing (proper) partition of n

Example (CS3)

CS3 @ I ê M Å K

ê ê

ê ê
O Å I ê M
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Character Graph for 1 < S2 < S3

Graded diagram of proper partitions for 1 < S2 < × × × < Sn
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Character Graph for 1 < S2 < S3

Each pathway through the diagram corresponds to a filled-in partition
and a row/column in matrix
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Character Graph for 1 < S2 < S3

A pair of paths ending at same diagram specifies a 1-D Fourier space
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Construction of Factorization

Stages of Subspace Projections

• Partial paths give CSn subspaces

• At stage for Sk, project onto
these subspaces

• Build sparse factor from
projections

• Full paths by stage for Sn
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ê ê
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Factorization of CS3 DFT Matrix

Full DFT matrix for CS3:
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Factorization of CS3 DFT Matrix

Three factors (CS2 on rows, CS2 on columns, CS3 on rows):
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plus a permutation matrix and a row-scaling diagonal matrix
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Results from Prototype Implementation

Prototypeþÿ Implementation
Can compute exact FFT up to n = 6

Operation Counts For Evaluation
n tfull

n tDIF
n tMaslen

n [1] 1
2n(n - 1)

3 4.7 2.7 2.7 3

4 18.8 5.3 5.4 6

5 87.9 8.8 9.1 10

6 486.4 13.8 13.6 15
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Future Directions

Theory

• Prove O(n2
|Sn|) bounds on operation counts

• Deduce better bases for blocks in factors

• Relate FFT on Sn to FFTs on Sn-1

Implementation

• Improve efficiency ofþÿ implementation

• Port to MATLAB or GAP

• Parallelize decimation-in-frequency FFT algorithm
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