Thesis Advisor: Michael E. Orrison

The Discrete Fourier Transform

The DFT reveals structure that is invariant under symmetry.
Suppose we want to analyze some periodic signal f :

- We pick an arbitrary full time period of f
- Take N samples $f_{0}, f_{1}, \ldots, f_{N-1}$ of f in this time period

Figure 1: $N=8$ samples of a periodic signal f
For $0 \leq k \leq N-1$, define the Discrete Fourier Transform (DFT) to be

$$
\hat{f}_{k}=\sum_{j=0}^{N-1} f_{j} \omega^{-j k} \quad \text { where } \omega=e^{2 \pi i / N}
$$

The $\hat{f}_{0} . \hat{f}_{1}, \ldots, \hat{f}_{N-1}$ are the Fourier coefficients of the samples $f_{0}, f_{1}, \ldots, f_{N-1}$.

$$
\left(\begin{array}{c}
f_{0} \\
\vdots \\
f_{N-1}
\end{array}\right) \xrightarrow{\text { input }} \quad D F T_{N} \quad \xrightarrow{\text { output }}\left(\begin{array}{c}
\hat{f}_{0} \\
\vdots \\
\hat{f}_{N-1}
\end{array}\right)
$$

Decomposition of original signal into "pure frequencies"

$$
f(t) \approx \sum_{k=0}^{N-1} \hat{f}_{k}\left(\cos \frac{2 \pi k}{N} t+i \sin \frac{2 \pi k}{N} t\right)
$$

Our signal f above then decomposes as shown below:

[^0]Suppose we sample our signal over a different time period - The samples f_{0}, \ldots, f_{N-1} could be much different

- But the Fourier coefficients \hat{f}_{k} will not be
- The DFT is invariant under translational symmetry

Group-Theoretic DFTs

Different spaces have different symmetries:
$\left.\begin{array}{cccc}\begin{array}{c}\text { Space }\end{array} & \begin{array}{c}\text { Symmetry } \\ \text { time translations } \\ \text { time domain } \\ \text { sphere } \\ \text { lists }\end{array} & \begin{array}{c}\text { rotations about center } \\ \text { permutations }\end{array} & \begin{array}{c}\text { Group } \\ \text { R/NZ } \\ \text { SO }\end{array} \\ S_{n}\end{array}\right]$

Table 1: Some different spaces and their associated symmetries
We therefore want generalized DFTs that show us similar symmetry-invariant structure. We can write these symmetries abstractly as groups and define these new DFTs using tools from abstract algebra:
$\{$ functions $f: G \rightarrow \mathbb{C}\} \longrightarrow\{f \in$ group algebra $\mathbb{C} G\}$ Wedderburn's Theorem The group algebra CG of a finite group G is isomorphic to an algebra of block diagonal matrices:

$$
\mathbb{C} G \cong \bigoplus_{i=1}^{h} \mathbb{C}^{d_{i} \times d_{i}} .
$$

For example, $\mathbb{C S}_{3}$ decomposes thus:

$$
\mathbb{C} S_{3} \cong \mathbb{C}^{1 \times 1} \oplus \mathbb{C}^{2 \times 2} \oplus \mathbb{C}^{1 \times 1}=\left(\begin{array}{lll}
\bullet & & \\
\bullet & \bullet \\
& \bullet & \\
& & \bullet
\end{array}\right)
$$

Every C-algebra-isomorphism $D: \mathbb{C G} \rightarrow \bigoplus_{i=1}^{h} \mathbb{C}^{d_{i} \times d_{i}}$ is called a Discrete Fourier Transform (DFT) for G. The coefficients of the matrix $D(f)$ are called the (generalized) Fourier coefficients of f.

The Problem

Naïve DFTs use N^{2} operations
The Solution (for $\mathbb{Z} / N \mathbb{Z}$)
The Cooley-Tukey Fast Fourier Transform (FFT) computes classical DFT in $N \log N$ operations

Cooley-Tukey FFT uses factorization of the group $\mathbb{Z} / N \mathbb{Z}$:

$$
1<\mathbb{Z} / p_{1} \mathbb{Z}<\mathbb{Z} / p_{1} p_{2} \mathbb{Z}<\cdots<\mathbb{Z} / N \mathbb{Z}
$$

Other groups G admit different subgroup chains:

$$
1=G_{0}<G_{1}<G_{2}<\cdots<G_{n}=G
$$

FFTs for the Symmetric Group

For the symmetric group S_{n}, we select the subgroup chain

$$
1=S_{1}<S_{2}<S_{3}<\cdots<S_{n}
$$

Blocks in matrix algebra for $\mathrm{CS}_{n} \leftrightarrow$ partitions of n :

Paths through character graph index rows and columns of matrix algebra blocks:

Figure 3: Character graph for $1<S_{2}<S_{3}$. Pair of paths shown indexes coefficient in first row and second column of second matrix block.

Decimation-in-frequency approach to FFT:

- Partial paths in character graph give subspaces of $\mathbb{C} S_{n}$
- At stage for S_{k}, we project onto these subspaces
- Build sparse factor from projections
- By stage for S_{n}, we have full paths
- Each pair of paths corresponds to a Fourier coefficient Conjecture The complexity of the evaluation of our decimation-in-frequency FFT for S_{n} is $O\left(n^{2} n!\right)$. The complexity of the inverse transform is also $O\left(n^{2} n!\right)$.

Acknowledgments

I would like to thank my thesis advisor, Michael Orrison, for his insight, support, and guidance on this project, my second reader, Shahriar Shahriari, for his helpful commentary, and Claire Connelly for her ex-

Results

We have computed sparse matrix factorizations of the DFT matrix for S_{n} for $n=3$ to 6 using Mathematica.

n	\oplus	\otimes	t_{n}^{DIF}	t_{n}^{M}	$\frac{1}{2} n(n-1)$
3	14	4	2.7	2.7	3
4	112	42	5.3	5.4	6
5	966	424	8.8	9.1	10
6	9278	4631	13.8	13.6	15

Table 2: Operation counts for the evaluation of the decimation-infrequency FFT. Here, $t_{n}^{D F T}$ denotes the reduced complexity of our decimation-in-frequency algorithm for S_{n}, while t_{n}^{M} denotes the re duced complexity of Maslen's decimation-in-time algorithm.

Figure 4: Sparse factorizations of DFT matrix for S_{n} for $n=3$ to 5 .

Figure 5: Comparison of costs for group algebra multiplication (red line) and FFT-based matrix algebra multiplication (green line). For $n \geq 5$, the FFT-based multiplication is more efficient

[^0]: Figure 2: Fourier decomposition of f into three pure frequencies.

