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The Discrete Fourier Transform

The DFT reveals structure that is
invariant under symmetry.

Suppose we want to analyze some periodic signal f:
e We pick an arbitrary full time period of f

e Take N samples fo, f1,..., fn—1 of f in this time period
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Figure 1: N = 8 samples of a periodic signal f.
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For 0 < k < N — 1, define the Discrete Fourier Transform
(DFT) to be
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The fo. fl, el fN_l are the Fourier coefficients of the sam-
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Decomposition of original signal into “pure frequencies”:
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Our signal f above then decomposes as shown below:
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Figure 2: Fourier decomposition of f into three pure frequencies.

Suppose we sample our signal over a different time period
* The samples fy, ..., fn—1 could be much different

e But the Fourier coefficients f; will not be

e The DFT is invariant under translational symmetry

Group-Theoretic DFTs
Different spaces have different symmetries:

Space Symmetry Group

time domain time translations Z/NZ
sphere rotations about center SO(3)

lists permutations Sn

A (13) C (132) b (23) b

bl — |B > |A] —  |C

C A C A

Table 1: Some different spaces and their associated symmetries

We therefore want generalized DFTs that show us similar
symmetry-invariant structure. We can write these symme-
tries abstractly as groups and detine these new DFTs using
tools from abstract algebra:

{functions f : G — C} —— {f € group algebra CG}

Wedderburn’s Theorem The group algebra CG of a finite
group G is isomorphic to an algebra of block diagonal matrices:

h
CG = pch

=1

For example, CS3 decomposes thus:
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Every C-algebra-isomorphism D : CG — @, C%*4 is

called a Discrete Fourier Transform (DFT) for G. The co-

efficients of the matrix D(f) are called the (generalized)
Fourier coefficients of f.

CS3 a Clxl D C2><2 D Clxl _

The Problem
Naive DFTs use N* operations

The Solution (for Z/NZ)
The Cooley-Tukey Fast Fourier Transform (FFT)
computes classical DFT in N log N operations

Cooley-Tukey FFT uses factorization of the group Z/NZ.:
1< Z/pZ <Z/p1p:Z. < --- < Z/NZ
Other groups G admit different subgroup chains:
l=Gi<G1 <G < <Gy =6

FFTs for the Symmetric Group
For the symmetric group S,,, we select the subgroup chain
1=5 <5 <5< <85,

Blocks in matrix algebra for CS,, < partitions of n:

() @ (1) @ (o)

CS; =
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Paths through character graph index rows and columns of

matrix algebra blocks:

N/

Figure 3: Character graph for 1 < Sp < S3. Pair of paths shown indexes
coefficient in first row and second column of second matrix block.

Decimation-in-frequency approach to FFT:

e Partial paths in character graph give subspaces of CS,,
» At stage for Si, we project onto these subspaces

* Build sparse factor from projections

* By stage for S,,, we have full paths

e Each pair of paths corresponds to a Fourier coefficient

Conjecture The complexity of the evaluation of our decimation-
in-frequency FFT for S, is O(n*n!). The complexity of the inverse
transform is also O(n*n!).
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Results

We have computed sparse matrix factorizations of the DFT
matrix for S, for n = 3 to 6 using Mathematica.

n © & M In(n—1)
3 14 4 27 27 3
4 112 42 53 54 6
5 966 424 8.8 9.1 10

6 9278 4631 13.8 13.6 15

Table 2: Operation counts for the evaluation of the decimation-in-
frequency FFT. Here, tDFl denotes the reduced complexity of our

decimation-in-frequency algorithm for S,, while tM denotes the re-
duced complexity of Maslen’s decimation-in-time algorithm.
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Figure 4: Sparse factorizations of DFT matrix for Sy for n = 3 to 5.
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Figure 5: Comparison of costs for group algebra multiplication (red line)
and FFT-based matrix algebra multiplication (green line). For n > 5, the
FFT-based multiplication is more efficient.

Copyright © 2005, Harvey Mudd College Department of Mathematics.



