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Introduction

This set of notes is a summary of part of my notes on a workshop held in Bonn about the so-called
Kervaire invariant one problem.

These notes are certainly sketchy and note complete. They surely need a lot of reworking. They
might nevertheless be of some use to someone...

This material is mainly based on the unpublished thesis of J. Jones. It relies also on the original
article of W. Browder. Extremely useful is are the Books of W. Browder on Surgery and the Book of



Milnor-Stasheff on Characteristic classes. Finally, the book of Bredon ‘topology and geometry’ is a
solid background reference.

We advertise that there exists a completely independent proof of most of the results here in a short
and clear paper of J. Lannes [reference?]. We unfortunately got aware of this reference quit a bit to
late for out workshop.

Last bit not least, P. Akhmetiev has recently put online a preprint where he claims to have
disproved the existence of Kervaire invariant one elements in high degrees. From this follows that the
E5 cycles h? in the Adams spectral sequence are for i big enough note infinite cycles.

1 Some prerequisites from Differential topology

The material of this section is taken form [Milnor-Stasheff]

1.1 The Thom isomorphism

Let 7 : E — M be a k-dimensional real vector bundle. We let Ey be its zero section.

Definition 1.1 The vector bundle 7 : E — M is orientable if for some bundle Atlas, all transition
functions take value in orientation preserving linear maps (that is, of positive determinant).

By definition of a vector bundle, each fiber Fj has a given structure of k-dimensional real vector
space hence Hy(Fy,0;Z) is non canonically isomorphic to Z, the choice of an isomorphism being
precisely the choice of an orientation.

We have the following characterization of orientability:

Proposition 1.2 The vector Bundle 7 : E — M owver the connected space M is orientable if and
only if Hi(E, Eo;Z) is isomorphic to the integers, and the natural inclusions (Fp,0) — (F, Ep)
induce isomorphisms on the k'™ integral homology group.

In the case of a non orientable bundle, we can still work over Fa. We then get:

Proposition 1.3 For any vector Bundle m : E — M over a connected space M, the group
Hy(E, Ey;F2) is isomorphic to Fa, and the natural inclusions (Fy,0) — (E, Ey) induce isomor-
phisms on k'™ homology with coefficients in Fs.

The choice of a generator in H* (coefficients Z in the orientable case, Fy otherwise) is called an
orientation of the bundle (of course, there is no choice in the non orientable case). Its is determined by
the choice of an orientation on a single fiber. Assuming we have made such a choice, then generator
is called the Thom class of the oriented bundle .

If M is a nice space (e.g. paracompact), the morphism
¢: HM — HFF(E, Ey)

given by the formula
¢(z) = (") Uu

is an isomorphism called the Thom isomorphism. Of course, this is not at all obvious that this map is
actually an isomorphism. We will admit it and rely on [Milnor-Stasheff]. Here, the coefficients depend
of course of where the orientation class lives (in Z or in Fa).

1.2 Wu classes
Let M be a closed manifold. We work over the field F5. By Poincaré Duality, the homomorphism:

Sq¢k H" FM — H™

is of the form:
SqFxr =z Uy



for some fixed and natural class v,,. The class
v= Z v;
is by definition the total Wu class of M and we have
Sq(v) =w

where w = ) w; is the total Stiefel-Whitney class of M. Hence the class v; is some universal
polynomial in the w;. The converse is not true as we soon shall see, as most of the v; are decomposable.
This will be a crucial fact for the main results described in these notes.

Here are some calculations. Let v =1+ v + vo +.... We have
w = v
Sqlvl +v2 = we
Sqtve +v3 = ws
Sq?vs + Sqtvs +vs = wy
Sq?vs + Sqtvy +vs = ws
Sq¢vs + Sq*vs + Sqtvs +vs = wg
S¢vs + S¢PvsSqtvg + v = wr
Sq*vy + Sq*vs + Sq?ve + Sqtvr +vs = ws

Moreover we have the Wu formula,
4 J
Sq¢’w; = Z(i —k—=1,j = k)witjrwy

k=0
For example
Sqtwy = w3+ woun
Sqtws = wsw;
SPws = ws +wiwi + wiwy
Sq1w4 = w5 + wawy

By solving, we get that v; is decomposable except if i = 2, in which case v; = w; up to decomposable
elements. Here are the low dimensional computations.

w1 = U1
2
W — Wy = V2
= 1wy +dec
1
vy = w3+ Sq vy
1
= w3+ Sq w;
= w3+ w3+ wiws
= wiw2
= dec
_ 2 4
Vg4 = w4+ wzwi + w; + wy
= w4 +dec
_ 2 2 2
Vs = wawi + wiwi + wizwi + wawy
= dec
vg = dec
vy = dec
vg = wg+dec
v9g = dec



1.3 Computations in a smooth manifold, according to Milnor-Stasheff

Let M C A be closed submanifold of codimension k. Let M C M, be a tubular neighbourhood of this
embedding. There is an excision isomorphism

H*(A,A— M) — H*(N.,N. — M)
By putting a metric, there is a pair homeomorphism (the exponential [BREDON]))
(E(e), E(€)o) — (Ne; Ne — M)

where F is the normal bundle of the embedding, and where for any vector bundle E — B, Ey denotes
the total space with the zero section removed. With this metric, we can make sense of D, the disc
bundle of radius € of E, and excision again shows that

H*(A,A— M) = H*(Ne, Ne — M) = (E(e), E(€)o) = H"(De, (De)o) = H*(E, Eo).

The Thom class u € H¥(E, Ey, Fs) yields a class u’ € H*(A, A — M, F3) (Z coefficients do it in the
oriented situation)

Theorem 1.4 We claim that the map
H*(A,A— M) — H*(A) — H*(M)

sends the class u' on the Euler class in the oriented case, and on the top Stiefel-Whitney class in the
general case (Fo coefficients).

Proof. Let s : M — E be the zero section of the normal bundle. Let ¢ : H*M — H?*(E, Ey) be
the Thom isomorphism. Then

é(s*(ug)) = (" (ug)) UVu =uUu = Sq*u

and therefore
& 1S¢Fu = wy(E) = s*(up)

The conclusion follows from the commutative diagram:

HF(A,A— M) HkA

| l

H*(N.,N. — M) — H*(M)

Definition 1.5 u is called the dual class of M in A

Corollary 1.6 If M is smoothly embedded as a closed subset of R"*, then wy(v*) = 0 and e(v*) = 0,
because, ' € HE(R"F) = 0.

As w(vk) = (w(TM))~!, we get a necessary condition for embeddability.

1.4 The tangent bundle of a manifold

Consider the diagonal embedding A : M — M x M. Then v(A) 2 T M. The dual class in this case
isw e H*"(M x M,M x M — A(M)). We define j, : (M,M —z) — (M x M, M x M — A(M)) by
Je(y) = (2,9).

Lemma 1.7 The class v’ € H"(M x M, M x M — A(M)) is uniquely determined by the property that
Ji(u') is the preferred generator of H"M for all x.

There is a restriction homomorphism:

H™(M x M, M x M — A(M)) — H™(M x M) .



1.5 Hirzebruch Signature theorem

Recall that if M?¥ is a closed manifold, the cup product pairing in the middle dimensional real coho-
mology evaluated on the orientation class is a non degenerate inner product, and has an associated
isomorphism invariant called the signature (difference of positive eingenvalues and negative eigenval-
ues).

As a matter of fact, the signature is a cobordism invariant, which is easily seen to provide a
multiplicative genus, that is, a ring homomorphism

TaxMSO — Z

By tensoring with Q, Hirzebruch’s theory of multiplicative sequences shows that the signature may
be recovered in the following way. Consider the power series:

vt
tanh v/t N

There is a way to associate to this power series a multiplicative sequence (L;);>1 called the L-
polynomials.

L4+ (1/3)t — (1/45)82 + ...+ (=1)* 1 (22 By, / (2k)t" + . ..

The signature of M** is the L-polynomial applied to the Pontryagin classes, and evaluated on the
fundamental class.

The Pontryagin classes of a real vector bundle are defined using Chern classes. Let £ — B
be a real vector bundle of dimension n. To this bundle is associated naturally its complexification
Ec — B, which is a complex vector of dimension 2n. The chern classes of this new vector bundle
are the Pontryagin classes of the former bundle E.

2 Some prerequisites from Stable homotopy

The material of this section is mostly taken from [Browder]

2.1 Stable homotopy of Eilenberg-Mac Lane spaces

K,, denotes an Eilenberg-MacLane space of type Z/2Z, that is K,, = K(Z/2Z,n) is a pointed space of
the homotopy type of a CW complex, whose homotopy groups vanish in all degrees except in degree
n, and , K, is isomorphic to Z/2Z.

Proposition 2.1 75 K, = Z/27Z
There is a detecting result for the non trivial element n € mo, K.

Proposition 2.2
0#60€mp,K,=n<8¢"",1,,0 >£0

Here, we have 0 : ¥°8%" — YK, 1, : YK, — Y"HZ/27Z is the adjoint of the canonical
homotopy equivalence.

2.2 Steenrod operations and SW duality

Our reference for this part is the unpublished thesis of J. Jones.

Let X be a finite CW-complex. We let X be its Spanier-Whitehead dual (which is actually the
function spectrum from X to the sphere spectrum).

There is a map Hy(X,F2) @ H" 9(D(X),F2) — F5 defined by:

f@g— {S"AX 1% HZ/2Z A X AD(X) — S"HZ/2Z}

This pairing is non degenerate and we get:



Proposition 2.3 Let X be a compact CW-complezx of dimension n. Let D(X) the SW-dual of X.
The pairing above is non degenerate induces a isomorphism of graded vector spaces

U H (X, Fy) = H"(D(X),Fy)

Furthermore, the natural right action of the Steenrod algebra H.(X,F2) on translates into the natural
left action of the Steenrod algebra on H*(D(X),F3) in the following way. For x in H.(X,F2) and 0
in the Steenrod algebra,

U(z.0) = Z(0).9(x)
where = is the antipode of the Steenrod algebra.

This seems to be well known, but would need a proof in our opinion!

3 Definition and some properties of the Kervaire invariant

All coefficients are Z/27Z.

3.1 Quadratic forms over Z/2Z

Let (—,—) be a non degenerate bilinear form over Z/2Z. A quadratic form relative to (—,—) is a
function such that q(z + y) = q(z) + q(y) + (z,v)

Theorem 3.1 Let q be quadratic on the quadratic space E and take any e in E. Then qg = q+ (e,)
is again a quadratic form, and all quadratic form are of this sort, in a unique way. In other words,
the space of quadratic forms is an affine space directed by E. There are only two isomorphism classes
of quadratic forms on a given vector space, classified by the Arf invariant A. There is a formula

Arf(q.) = Ari(q) + q(e).

Remark: Not all non degenerate bilinear form have a quadratic form, for example the dimensions
has to be even.

3.2 An interesting quadratic map

This is taken form the book of Browder on surgery on simply connected manifolds.

f

Assume we have manifolds X and A and a commutative diagram
vy ——

X n
)('——?—>44

We assume that 7 is trivial. Thom construction induces a map T'(vx) — T'(n) which induces by
Atiyah duality a map g : ¥ A4 — X, hence a map in cohomology G* : H*(X ) — H*(AL).

We define a map ker g* — Z/2Z by the formula

n+1

r—<Sq"T x,g>

For A a 2¢-dimensional manifold, and X = S2%, and ¢ = 2k+1, we get amap q : H"X — H?"(A).
For g degree 1 normal map, we define:

d(x) = Sqf ™ (@)[A] = Sqf, ()[A]
Let z: X — K, y: X — K, between cohomology classes. We have a stable diagram

T Sqdt?t
A—2sx 2 > XxX ol Ky x Ky —" Ky 2 Kop

I \

QX VX V(XAX) =0 K,V K,V (KgAK

zVyVzA



Hence
Yz +y) = P(@) + (y) +Sa0 L al)

but
+1 _
Safi (1) = Bt Av)
hence B _
<Sq™ iz Ay)A, g>=<Sq, 1, i > (x Ay)Ag = g (z Uy)
This proves that v is quadratic with respect to the cup product pairing.

3.3 Definition of the Kervaire invariant

Let X be a 2n-dimensional manifold, whose stable normal bundle is trivial. Then by the above
construction, we get a quadratic map whose associated bilinear for is the cup product (evaluated on
the fundamental class):

Yx  H"X — 7./27

By definition, the Kervaire invariant of the stably framed manifold X is the Arf invariant of ¢x.
We shall see that the Kervaire invariant strongly depends on the framing, as thee are example of
different different framing on the same manifold yielding both possible Arf invariants. The Kervaire is
a cobordism invariant, hence does not change by framed surgery. We mention, and we sill come back
to this later, that the Kervaire invariant is actually a complete obstruction for a framed manifold to
be cobordant with a framed homotopy sphere, at least in dimensions 4n + 2 for n > 0.

3.4 Cobordism invariance

This is a very sketchy summary of what is well written in Browder’s Book!

(f,0): (X,Y) — (A4,B)

Criterion: Arf(y) = 0 if and only if there exists a half dimensional lagrangian H C K9 such that
| is trivial. A pairing is symplectic if it is non singular and there exists a symplectic basis associated
to it (that (z;, ;) such that x;.y; = 1, z;.2; = y;.y; = 0). Symplectic forces even dimensional.

There is a diagram
Ki(X) —— KI(Y) — K9T}(X,Y)

K1 (X, Y) —— Ky (V) ——— Ky(X)
vertical maps are Poincaré duality (PD) isomorphisms.

Consider the following situation:f : V. — W, f*: W* — V* ker f = Im(f*), V = ker f ® Imf
and both have the same rank. Question: ¢|g trivial ?

A/B B y —
N
X/Y

Sqq+1

X : Kq K2q+1

Hence "z =0



4 Orientations

4.1 Orientations and framings

Let F — E —— B be a principal F-fibration with classifying map B — BF. Suppose that
f: X — B lifts to E. Then the space [liftings] of homotopy classes of liftings is really in bijection
with [X, F]. There is an action of F' on E, and this induces a map

[XaF] X [XaE] - [XaE]
That restricts to a map
[X, F] x [liftings] — [liftings]
that gives [liftings] the structure of an affine space directed by [X, F].

We will essentially consider from now on the case of the fibration O — FEO — BO, and
K, — BO < v >— BO (see the following section).

4.2 'Wu orientations and quadratic forms

Consider the universal (¢ + 1)-Wu class vq : BO — Ky41. By this we mean that the the Wu classes
are universal polynomials in the Stiefel-Whitney classes, and that the universal Stiefel-Whitney classes
live in the cohomology of BO, and are therefore classified by maps to Eilenberg-Mac Lane spaces.

Let M be a 2¢ dimensional manifold. The Wu class v, vanishes by instability. Let BO < vg >
be the homotopy fiber of V; : BO — K41, so that we have a principal K|, fibration K, — BO <
vg >— BO with classifying map BO — BK, ~ Kg41.

Then the vanishing of the (¢ +1) Wu class on any 2¢ dimensional manifold M forces the existence
of at least a Wu orientation M — BO < v, >.

In fact, it can be shown that there is a quite natural commutative diagram

O K,

-

EO—>BO<UQ>

|

BO BO Kq+1

Vq

In particular, any framed manifold M has a prefered orientation M — FEO hence a canonical Wu
orientation M — EO — BO < vq >.

On the other hand, for such manifolds, the Arf invariant was precisely defined in terms of Sg?t!
that is represented by multiplication by the ¢ + 1 Wu class. This link is the reason for the important
results that follow.

4.3 Framings and quadratic forms

There is a commutative diagram:

O—>Kq

-

EO —— BO < vg >

S

M BO BO Ky




It is a calculation that i : O — K|, is trivial if ¢ # 2° — 1 and maps to cw, if ¢ = 2° — 1 and to zero
otherwise. This simply comes form the fact that the Wu class is decomposable in the degrees not of
the form 2¢, that the map i : O — K is the loop map of v, : BO — K 1, and that looping destroys
decomposable elements. Moreover, according to the fact that vei = wsi, i : O — K, represents a
non trivil class that is the loop of the Stiefel-Whitney class woi.

We already see that something different will happen according to the fact that 2° = ¢ + 1 or nor,
or in other words, for framed manifolds of dimension 2¢ = 2'+1 — 2,

Given the data for a change of the framing F' on M, that is a map g : M — O, we can change
the quadratic form ¥j; by the formula

(=) =(=)+ < ((gi)"wq,) >
The question is: how does 9’ relate to the natural quadratic form on the framed manifold [M, ¢F].
This is given by the change of framing formula.

4.4 The Change of framing formula

We now that a framing produces a quadratic form on the middle dimensional cohomology. Given a
framing, that is an explicit class F': M — FEO, we obtain all framings by modifying F' along a map
M — O.

The change of framing formula asserts that:
qgr (=) = qr(=)+ < ((9i) wg, =) >

In particular, Arf(ger) = Arf(gr) + ¢((gi)*wy).

In dimensions n = 2q # 27! — 2, we obtain that Arf(qr) = Arf(g,r) for all g : M — O, that is
the quadratic form and its Arf invariant do not depend on the framing.

5 Thom-Pontryagin theory and Kahn-Priddy theorem

5.1 Framed cobordism and stable homotopy

Let X be a topological space and define X as the set of map f : M — X where M is a framed
manifold, divided by the relation that f: M — X equals f' : M’ — X as soon as there is a framed
cobordism B : M ~ M’ and a map g : B — X restricting to f and f’ on the boundary of B.

A parametrized Thom-Pontryagin construction produces a map
X/r—aSXx,

In particular 75 X (without extra base point!) is the subset of X/” where the manifolds are [M, F]
are null cobordant.

5.2 Framed and biframed manifolds, and The Kahn-Priddy Theorem

The Kahn-Priddy theorem asserts in its crude form that the transfer ¢ : Y RP> — S° induces an
epimorphism of 2 components in positive degrees, that is

for * > 0; (Q)Wf(t) : (Q)WERPOO — (Q)WESO

is an epimorphism.

Actually, the Segal conjecture computes all maps RP> — S® and we have that this group is Zs
with unit the transfer. All maps inducing an iso on (Q)Wf behave actually like the transfer.

By the Thom-Pontryagin theory, the sequence of maps

RP® — 0O — S°



really looks like geometrically:
[f:M—>RP*F:M—EO—|[f:M—O,F: M — EO]— [M,F: M — EO]

with (M, F) cobordant to zero.

The surjectivity of )TYRP> — ()77 S implies immediately the surjectivity of o770 —
(Q)WESO, hence any framed manifold is framed cobordant to a manifold which is itself framed cobordant
to zero for some framing.

In particular, as the kervaire invariant is a framed cobordism invariant, we see that in dimensions
n # 21Tt — 2,

kK(M,F)=r(M' F)

where M’ is null cobordant for some framing, but in these dimensions, the Kervaire invariant does
precisely not depend on the framing, it must be zero.

6 Adams Spectral sequence interpretetion of the Kervaire in-
variant one problem

6.1 The Adams tower for S°

An Adams tower for S is a tower of spectra

Xn

X —Y

SV=Xg—=Y
such that
o X,+1 — X, — Y, 41 is an exact triangle,
e Y] is a generalized Eilenberg-Mac Lane spectrum (GEM),
e H*f; epimorphism.

All Adams towers are equivalent (in a non canonical way), and any Adams tower immediately
provides an Adams spectral sequence, that converge to the p-completed part of the homotopy of S°.

The existence of such an Adams tower is proved by induction, or one might as well take the
canonical resolution associated to the monad of the adjoint pair (forget,— A HF3), and realize it
(totalize).

But what we would like to built is a minimal Adams tower, that is, one for which the E'-term is
actually the E?-term. Let us see first the existence of such a resolution. Apply H* any Adams tower.
One obtains a sequence of short exact sequences

H X, — HY, ., — H*X,
and pasting all these provide a resolution
H*Xy— H*Y, «— H* 'Yy — H* 2V — ...

of H* X by free modules.

10



Now the spectral sequence is gotten by applying 7, to the Adams tower.
T Xpg1 — T Xy — MY,

but notice that
7Yy = hom*(H*Y,,, H*S)

and it follows that the Fs-term is precisely Exta,(F2,F2). Now, if we take a minimal resolution,
that is one such that the number of generators is given by the dimensions given on the Es-term, then
hom(d', F3) has to be zero.

Using the information in for example [Kochman|, we know how such a minimal resolution has the
following Adams tower like:

f3 i oj_
Xy ——Vigj it 5" T2 2 He

L

X1 —_— \/iz()ZQi_lHCi

.

SY = X, H

where H stands for the Eilenberg-Mac Lane spectrum HZ/2Z.

We have

e H'X; =% "1A

e the map fo is the map that sends ¢; — ©~15¢
e the map f3 maps ¢;; — Zkgi SqQHl’chk

We note that f5 f5c;; = 0 because of the Adem relations. The delicate point would be to show

that f3 is surjective, but we will admit it.

6.2 Explicit computation of differentials

X, Yot1

anl

Yo,

Xi—Y

St—6>SOZX0—>Y1

Assume f10 # 0. This forces ¢ = 0 and the degree of f has to be odd.

11



Now if f10 = 0, this implies that f lifts to X; as a map 6;.

X, fn+1 Yn+1

l fn

Xpg —Y,

X1L>y2
]
f1

St ——= 50 = X, i

Now fi0; # 0 forces t = 2! — 1. Moreover, if we let p; : V;>0%2 "'He; — Y2 “1He; be the obvious
projection, and g be the composition ¥; — ©X; — XY, — Y2 He¢; where the last map is Xp;,
then the composition p; f261 belongs to < g, f1,60 > with zero indeterminacy and is non zero.

More, in this case, 6 is detected by h;, and the cone of © supports a primary operation. That is

the map 6 has Hopf invariant one.

If we begin with 6;, we see by a similar reasoning that 6 is detected by h? if and only the Toda
bracket < g, fa,601 > is non zero (modulo zero), and that this condition corresponds to the cone of 4
supporting the secondary operation corresponding to the Adem relation defining h?. Here the map g

is the composition:
2ty oi_1 i1 9t _q
Yo — XXo — Vigj i1 5 * Hepj— % * Hegg

We use implicitly that in these degrees, a permanent cycle can not be a boundary.

6.3 Refinement of the detection result

By the Kahn Priddy theorem, the map 6; factorizes through RP>

52i+172 & X1
\ /
RP>
hence:
6, detected by h? & < ¢, c,01 >#0
& < i, fASF£D
& < i, cf,A>#0
Lemma 6.1 .
f*ct = ’U,2 -1

Hence the situation is:

t7 .
G e i

¢ ® i
\/tgiEQLIH . 22L+1_1H

SQi—Q —/\> RP®

By instability, Sq2 " ~2'u2~! = 0 for ¢ < i, hence the Toda brackets < Sq
defined separately. An elementary exercise shows that:

<o (W Ve A>= Y <85 WA >
0<t<i
Now we have:
Proposition 6.2 For 0 <t <1, < Sq2i+1*2t,u2t’1, A>=0
This implies immediately that:
Proposition 6.3 0; detected by h? if and only if < Sq" T, u™, X\ > is non zero.

12

git+1l_ot
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6.4 Detecting criterion for manifolds of Kervaire invariant 1

Assume there is a framed manifold [M, F] of Kervaire invariant 1, then there is a framed cobordant
manifold [N, F'] of Kervaire invariant one who has Kervaire zero for some framing G.

Hence the difference of framings ¢ = G/F : M — O is a map such that gr(¢*Qu,y1) = 1 Now
we recall how one computes gr.

Given a cohomology class u : M — K,,, gr(u) is the element of 7o, K,

52"+k—>TV—>TV/\M+fT>Sk/\Kn
a

where v is the stable normal bundle of M. By the Kahn-Priddy theorem, there is a commutative
diagram

g2tk ——=Tv ANMy ——  gkp)f SFK, — YFH, — Hant1
SkAO
SER P>

and we check easily that

< Sqn-‘rl, LruQFg*(Qvn—i-l) >: 1
< Sgntlanu S
< St ur A >=1
[M, gF] is detected by h?

[M, gF| has Kervaire invariant 1

-
=
=
=

7 The Kervaire invariant problem: approaches and results

Important Remark: P. Akhmetiev has recently posted a preprint where he seems to
prove that there are no Kervaire invariant one elements in high degrees.

7.1 The Kervaire invariant problem

A homotopy sphere (h-sphere) is a smooth manifold homotopy equivalent to the ordinary sphere.
The set ©™ of h-cobordism classes of oriented h-spheres of dimension n is an Abelian group under
connected sum. The h-cobordism theorem allows us to equate O™ with the set of smooth structures
on S™ provided n > 5. Using the Thom-Pontryagin construction, one establishes an exact sequence

0 — P — 0" £ 75 /ImJ, = cokerJ,

where bP"*! is the group of oriented h-spheres of dimension n bounding a parallelizable manifold, 73
is the n'" stable homotopy group of spheres and J, : 7,0 — 72 is the J-homomorphism from the
homotopy groups of the infinite orthogonal group to 7. The map K is defined because any homotopy
sphere is stably parallelizable.

This sequence is analyzed with the help of surgery theory and one shows that the map K : " —
cokerJ, is at most Z/2 in dimensions n = 4k + 2. This Z/2 indeterminacy corresponds to a surgery
obstruction -the Kervaire invariant- and the realizability of this obstruction by a manifold is called
the Kervaire invariant 1 problem.

We proved, following Jones’ method, the fundamental result due to Browder:
1. the Kervaire obstruction vanishes in dimensions n = 4k + 2 # 2¢+1 — 2,

2. there exists a manifold of Kervaire invariant 1 in dimension 2¢*! — 2 if and only if there exists
a stable map 6; detected by the class h? in the classical mod 2 Adams spectral sequence (in the
Adams spectral sequence language : there are maps of Adams filtration 2 detected by h?).
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That is, a framed manifold [M, F'] defines a non trivial element in cokerT if and only if x([M, F]) = 1,
and this happens if and only if there is not framed cobordant to any homotopy sphere. Has to
manifolds with the same Kervaire invariant are immediately framed cobordant [reference], we obtain
that cokerT is at most Z/2Z, and that this happens only in the case where n =1 —2 and h? survives
in the ASS. We notice that the relation is established in such a way that a framed manifold detected
by h? would have precisely Kervaire invariant 1.

Now, we noticed that the only (except for finitely many cases) possible permanent cycles on the
second line of the ASS are hf and hih;. The family hih; was shown by Mahowald to be a permanent
family. The question for the h? family remains open at the time of this writing, and we would like to
discuss a little the way things are going to work.

7.2 Transfer complexity

We heavily used the transfer map ¢ : RP* — S° in conjunction with the Kahn-Priddy theorem.
One can iterate the construction in the following manner.

RP> ARP> s g0 A §0 —— g0
Working this out a little bit, one gets a transfer tower and a map from this tower to the Adams Tower.
The tranfer is a map ¢t : RP>® — S% We consider the fiber sequence
X, — S — HZ/2Z
It is well known that ¢ is trivial on the zeroth homology group, hence the composition
RP> — S — HZ/2Z
is trivial, and this in turn implies that ¢ has a lifting ¢’ : RP*® — X;.
There is now a fiber sequence:
Xo — X1 — HZ/2Z N X,
The map t At: RP® ARP> — S factorizes as
RP® ARP>® X Rp> L, g0
and ¢t At is the composition:
RP® ARP>® XL Rp> L x, g0
The composition
RP= ARP® LLRP> Y, x;
is trivial in homology because t is, and we get a lifting (¢ A t)’ : RP*° ARP>® — Xs.

An induction allow one to construct a map of towers:

RP()O/\3 L X3

RPoo/\2 L X2




The transfer is a map ¢ : RP>® — S°. We consider the fiber sequence
X, — S — HZ/2Z
It is well known that ¢ is trivial on the zeroth homology group, hence the composition
RP>® — S — HZ/2Z
is trivial, and this in turn implies that ¢ has a lifting ¢’ : RP* — X;. There is now a fiber sequence:
Xo — X1 — HZ/2Z N X,

The map t At: RP® ARP> — S factorizes as

RP> ARP™ 2L Rp> L, 60
and t At is the composition:

RP* ARP® L Rp> 2 x, g0

The composition

RP® ARP® L RP> 1, X
is trivial in homology because t is, and we get a lifting (¢ A t)’ : RP*° ARP>® — Xs.

An induction allow one to construct a map of towers:

3.9

RP>" X3

RPoo/\2 L X2

RPoo L)Xl

50;50

One gets the transfer conjecture: any map RP> — S lifts to a certain transfer filtration, and once
this is done, the map is detected by a spherical element.

Recall that the Whitney sum of bundles induces a map BO x BO — BO. The effect of looping
this map is a map w : O x O — O, which we call the Whitney map. Recall also the fundamental
diagram:

O K,

.

EO —— BO < Un41 >

/]

M BO BO Ky

If g: M — O is a map, we are interested in g*y,,, where y,, is the image of the Stiefel-Whitney class
Wp+1 through the cohomology suspension. Recall also that if s : RP>® — O is the real reflection
map, s y, is u".

Theorem 7.1 [M?", F] a framed manifold and g1, g2 — O two maps. Then w(g1,g2)*Yn = giyn +
92Yn.
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Indeed, being in the image of the cohomology suspension, y,, is primitive (for w*), and we get

w(g1,92) Yn = A%(97, 95) 0" (Yn) = A" (91, 95) (1 @ Yn + Yn @ 1) = g7yn + 95Yn

Now assume that [M?", F] a framed manifold with gy, g2 : M — O, g5y, Ugsyn = 1. Then it follows
that ...

Assume that F' is a framing of Kervaire invariant zero. We now that for a general g : M — O,

Arf(qgr) = qr (9" yn)

hence
QF(_) = Q(w(gl,gQ))F+ < (w(91792))F*ym - >
Uw(gr,g2))F+ < (91Yn + 95Yn, — >
Qw(gr,92)FT < G1Yns — > + < GoYn, — >
and
Arf(q(uw(g1,90))F) ar((w(g1,92))F*yn)
= qr(91Yn + 93Yn)
= qr(91Yn) + qr(93Yn) + 91Yn U g3yn
= qr(9iyn) + ar(goyn) + 9iyn + 1

Hence one among qr(giyn), ¢r((w(g1,92))F*Yn), qr(g3yn) is one, hence M has a framing of Kervaire
invariant one. It is not difficult to see that elements of Kervaire invariant one are detected in this
fashion if and only if they factor through the double transfer.

The same argument shows that n?, v2, o2, the squares of Hopf maps do factor through the double
transfer. Minami proved:

Theorem 7.2 0; if it exists, does not factor through the double transfer fori > 5
Lin and Mahowald completed the answer and proved
Theorem 7.3 0; does factor through the double transfer for i < 4.

Hence the transfer complexity of the Kervaire family, if it exists is maximal: The Kervaire elements
won’t be decomposable in the sense of the transfer.

7.3 Structure of the family
Now, should the family 6; exist?

There are inductive approaches to the construction of the 6;-family. One of them relies on:
Theorem 7.4 If 0; exists such that 20; = 0 and 9? =0, then 0,41 exists.

This is of course not really an induction, because by constructing ;41 in this fashion, it is less than
obvious that ;1 will satisfy the induction property. The elements 64 and 65 are constructed by this
inductive approach. This makes one think that if 8; fails to exist for some i, then 6 will fail to exist
for all k > i.

We notice that Sq°h? = h? '+1, and the Sq" on the E%-term converges to the Root invariant. It
follows that if 8; and 6, exist, then 6,4, is in the root invariant of 6;.

7.4 The situation

have a geometric construction zl

and are detected 2

Have a homotopy theoretic by the double tranfer 0
construction 04

are not detected 05

by the double transfer :
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7.5 Argments for the existence

Assuming that conjectural picture, there should exist an index k& > 5 such that 6, exists for for all
1 < k and fails to for i > k. The question is of course if k is infinite.

A well known trick shows that h? survives and detects a map 6; of order 2 yields the existence of
nj+1. All the known maps of Kervaire invariant 1 6;,% < 5 can be chosen of order 2.

Thinking of the existence of 7; as a manifestation of the existence of 8;, this would suggest that &
is infinite. This is so to say the optimistic hypothesis.

7.6 Arguments against the existence

We might also draw a parallel between the Hopf family on the 1-line and the Kervaire family on the
2-line of the ASS.

First, the maps of hops invariant one 7, v, o are detected by hy, ho and hs, which are the only
permanent cycles on the first line of the ASS. They are all in the image of the J-homomorphism,
and detect the existence of division algebra structures on euclidian spaces. On the E? term of the
ASS, these maps are related by Sq° operation, hence the root invariant of 7 contains v and the root
invariant of v contains 0. The complexity of the family increases in the sense that 7 reflects the
existence of a commutative associative division algebra structure, while v reflects the existence of non
commutative associative division algebra structure, and o reflects the existence of a neither associative
nor commutative division algebra structure.

Finally, the Adams differential
dah; = hoh?_,

holds for ¢ > 2 but is zero for ¢ = 2,3, and this explains why the hy and hg are infinite cycles.
[hihiy1 = 0, hih?yy = OhZhiys = hiys]
Now, a well known calculation shows that the root invariant of o is n? (reference?).

This leads one to suspect that, reflecting the increasing complexity of the already constructed 6;,
there could be some differential pattern that are non trivial only in dimensions ¢ >> 0, that would kill
the Kervaire elements. Such differential pattern should fit in the scheme given by the new doomsday
conjecture, that says that the Root invariant has to eventually increase the Adams filtration upon
iteration.

Another reason to suspect that k is finite is that 6, was shown by Milgram to be detected in the
cohomology of some sporadic group. Hence the sparsity of the Kervaire family might be related to
the finiteness of the family of Sporadic simple groups.
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