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1 Introduction; Physical Motivation 1/10/08
1.1 Introduction

Topological quantum field theories (TQFTs) have found many applications in areas of

mathematics. �ey were first developed by Witten and later by Atiyah and Segal as a

way to assemble information on invariants of closed manifolds satisfying certain gluing

properties. A TQFT pertaining to n- and (n + )-dimensional manifolds is called an
n + -dimensional TQFT. Some applications include:
. Donaldson-Floer theory ( + -dim’l)
. Jones and Kauffman polynomial invariants ( + -dim’l)
. Gromov-Witten theory ( + -dim’l)
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. Symplectic Field�eory (n-dim’l)

. String Topology

. Freed-Hopkins-Telemann twisted K-theory

Furthermore, TQFTs highlight some algebra and category theory, including

. Frobenius algebras, Gerstenhaber algebras, Batalin-Vilkovisky algebras,

. Tensor categories, operads, and PROPs

We seek to classify all such theories, startingwith certain -dim’l ones. Work byCostello

has permitted the classification of topological conformal field theories where the invari-

ants are vector spaces over a field k of characteristic . Other naturally occuring exam-

ples of TQFTs involve more general algebras, however. Furthermore, recently derived

versions of such theories, replacing the algebra with constructions in stable homotopy

theory, have been developed (see the lectures by J. Lurie this winter).

1.2 Physical Motivation: Classical Field Theory

Segal’s article “Topological Structures in String�eory” [] contains an overview of

some of this physical development.

�e first example of a field theory arising in physics was that of electromagnetic

(EM) field theory, in the th century, which concerns the study of two -dimensional

vector fields E and B on R+ (space-time). �ese vector fields can be combined to
give a function F ∶ R → R, which can then be arranged as a -form F(x) =
∑≤i< j≤ Fi j(x) dx i ∧dx j . Maxwell’s equations for E and B then become the constraints

dF =  and d∗F =  that F must satisfy. Here, d is a covariant exterior derivative on
forms, and ∗ is the Hodge star duality operator; note that these operations depend on a
metric on R.
Another field theory to arise in physics is gravity: here, we replace R with a -

manifold X, equipped with a metric g.�en consider the functional

S(X , g) = ∫
X
Rg d(vol),

where Rg is the scalar curvature of g.�en g is a critical point of this functional precisely

when it satisfies the Einstein field equations.

In the s, it was discovered that if X ⊂ R is a nonsimply connected, open set, then
one could have an EM field with  field strength (i.e., F = ) while still exhibiting some
physical effect. (�is is the Aharonov-Bohm effect.) Chern and other mathematicians

determined that the correct mathematical object to represent an EM field should be a

connection A on aC-line bundle L over X, the curvature form of which should satisfy
Maxwell’s equations.

We recall the basic elements of connections on vector bundles. Suppose p ∶ L →
is a C-line bundle on X and PL is its associated principal U()-bundle. A (principal)

connection is a U()-equivariant splitting of T(PL) into p∗TX ⊕ TvertP . �e associ-

ated covariant derivative DA ∶ Ωq(X;R) → Ωq+(X;R) is a linear function satisfying
DA( f σ) = f DA(σ) + d f ∧ σ , for f ∈ C∞(X;R).
To be precise, we take our differential forms with coefficients in L, where Ω(X; L) =

Γ(L), the smooth sections of L. If V is a vector field on X, then DA(σ)(V) = [Ṽ , σ],
where Ṽ is the horizontal li�ing of V to a vector field on PL coming from the splitting

of the connection. �en DA ∶ Ω(X) → Ω(X) gives the curvature form FA ∈ Ω(X)
(or more precisely, Ω(X; ad P)), which satisfies the Bianchi identity DAFA =  and
[FA] = c i(L) (by Chern-Weil theory).
We can also think of the connection as a parallel transport operator: to each curve

γ ∶ I → X, we assign a linear operator τA(γ) ∶ Lγ() → Lγ(), such that

• τA(γ) is independent of the parameterization of γ,
• τA respects gluing, so τA(γ ∗ γ) = τA(γ) ○ τA(γ).

�en for x ∈ X, τA determines a map τA ∶ ΩxX → Iso Lx ≅ U(). If FA = , so that
the connection is flat, then τA(γ) depends only on the path-homotopy class of γ, and so
this map τA factors through π(X , x) to give a representation τA ∶ π(X , x) → U().
(�is is the holonomy representation.) �us, EM fields with zero field strength are
understood via the representation theory of π(X) into U() (or potentially other Lie
groups or principal G-bundles).

We now relate parallel transport to field strength: suppose Σ is a surface with ∂Σ = S,

and σ ∶ Σ → X is a map with γ = ∂σ ∶ S → X. Assume these maps are based at x.�en

define

F(σ) = ∫
Σ

σ∗FA,

so that eπ iF(σ) = τA(γ) ∈ U() (perhaps up to some factor). �us, if F(σ) = , then
τA(γ) = , and the holonomy representation of this loop is constant.
Finally, given a connection A on a C-line bundle p ∶ L → X, we obtain a functor τA

from a path categoryPX to a category of linesL inC∞. We describe these categories as
follows: ObjPX = X, and for x , y ∈ X,

PX(x , y) = {(t ∈ R, γ ∶ [, t]→ X) ∣ γ() = x , γ(t) = y},

so that composition is given by concatenation.�en ObjL = G(C∞), and L(L , L) =
Iso(L , L).

1.3 Physical Motivation: String Field Theories

We now generalize these ideas to define a string field (or B-field, gerbe, or gerbe with
connection). We now associate to every loop γ ∶ S → X a C-line Lγ , independent of

the parameterization of γ. In order to do this, we consider the space of closed strings

LX//S = {(S ⊂ R∞
, f ∶ S → X) ∣ S a closed, oriented -manifold}.



MATH 283 Notes: 1/10/08–3/13/08 3 of 21

We topologize this space as follows (in the manner of Galatius-Madsen-Tillman-Weiss,

or even�om originally):

LX//S =∐
k≥
Emb(∐

k

S ,R∞) ×Diff+(∐k S
)Map(∐

k

S , X).

Since Emb(∐k S
 ,R∞) is contractible and has a free action by Diff+(∐k S

), it is a
model for EDiff

+(∐k S
), and so the components of LX//S are homotopy orbit spaces

Map(∐k S
 , X)h Diff+(∐k S

). �e “//” indicates that this is a homotopy or stack-y quo-
tient space.

Now to a surface connecting two sets of loops, we want a notion of parallel transport.

Suppose that Σ ⊂ R∞ × [, t] is a surface with incoming boundary ∂inΣ = ∐p

i= γ i in

R∞ × {} and outgoing boundary ∂outΣ = ∐p+q
i=p+ S

 in R∞ × {t}, and σ ∶ Σ → X is a

continuous map. We seek to assign a linear map

Bσ ∶ L∂inσ =
p

⊗
i=

Lσ ∣γ i
→ L∂outσ =

p+q
⊗
i=p+

Lσ ∣γ i
,

such that, as above,

• Bσ is independent of the parameterization of Σ,

• B respects gluing of surfaces along boundary components.

As above, we have a notion of holonomy: a given closed surface Σ represents a cobor-

dism from ∅ to ∅. Taking L∅ = C canonically, we have that Bσ ∶ C → C is a linear
isomorphism, hence Bσ ∈ C×. In fact, we may further assume that Bσ ∈ U(). Conse-
quently, we obtain a map

B ∶ Emb(Σ,R∞) ×Diff+(Σ)Map(Σ, X)→ U().

A theory of a curvature form also exists here, via Chern-Weil theory on X (see []) and

gives a -form HB ∈ Ω(X;C) such that dHB =  and [HB] ∈ H(X;C) is described as
follows:�e evaluation map LX × S → X defines a map on cohomology

t ∶ Hq(X)→ Hq(LX×S) = (H∗(LX)⊗H∗(S))q → Hq−(LX)⊗H(S) ≅ Hq−(LX).

�en t[HB] = c(LB → LX), where LB is the line bundle on LX that B determines.

Hence, if there exists a -manifold Y and a map Ψ ∶ Y → X with ∂Y = Σ, we define

HB(Ψ) = ∫
Y
Ψ
∗HB ,

and have that eπ iHB(Ψ) = B∂Ψ ∈ U(). Additionally, the string field Bmust satisfy some
analogues of Maxwell’s equations: if (X , g , B) is a smooth manifold with metric g and
field B, define

S(X , g , B) = ∫
X
Rg d(vol) +H ∧ ∗H.

�en (X , g , B) should be a critical point of this S functional.
�ese ideas then lead to the notion of a conformal field theory, which we take to be
. a C-vector space (or Hilbert space) H,
. a parallel transport operator: for each conformal (or topological) surface Σ giving

a cobordism from p circles to q circles, we obtain an operator

µΣ ∶ H⊗p → H⊗q

satisfying certain gluing axioms.

We can construct such a theory from a critical point (X , g , B) as follows. Let H =
L(LB) (the L-section of the line bundle above). We then express µΣ as an integral
operator, where the integral is taken over a space of paths. More precisely (but not en-

tirely rigorously), for ϕ ∶ Σ → X, let S(ϕ) = E(ϕ)+ iBϕ , where E(ϕ) is a sort of Dirichlet
energy of ϕ.�en define K ∶ (LX)p × (LX)q → C by

K(γ , . . . , γp ; γp+ , . . . , γp+q) = ∫ e iS(ϕ)dϕ,

with the integral taken over all such ϕ. Finally, for α ∈ H⊗p and y ∈ (LX)q , define

µΣ(α)(q) = ∫
x∈(LX)p

K(x , y)α(y) dµ(y).

Ultimately, wewill replace this non-rigorous path integral with a Pontryagin-�om con-

struction.

2 TQFTs 1/15/08
2.1 Atiyah-Segal Definition

�e first definition of an n-dimensional TQFT is due to Witten, Atiyah, and Segal and
comprises several parts: first, it is a functor E from closed, oriented (n − )-manifolds
with diffeomorphisms to C-vector spaces and linear isomorphisms. (In the physical
setting, E(X) is interpreted as a vector space of functions or sections of a bundle over
some space of fields. For example, the space may be taken to be Map(X ,M) for some
fixed M, so that E(S) is the line bundle L → LM = Map(S ,M) from above.) E must
satisfy some properties, roughly that “E(X∐X) = E(X) ⊗ E(X)”: for any finite
family {Xα}α∈I of (n − )-manifolds, there exists a multilinear map

mI ∶∏
α∈I

E(Xα)→ E(∐α∈I Xα)

satisfying the the universality property of the tensor product. As a result, there exists

an canonical isomorphism E(∐α∈I Xα) ≅ ⊗α∈IE(Xα). In particular, this yields an Sn-
equivariant map E(X)⊗n → E(∐n X).
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Furthermore, a TQFT assigns to an oriented cobordism Y from X to X a linearmap

ψY ∶ E(X)→ E(X) satisfying some properties:
(a) ψY depends only on the oriented diffeomorphism type of Y ,

(b) ψ respects gluing, so ψY#Y = ψY ○ ψY ,

(c) ψ is tensorial, so if Y ′ is a cobordism from X′
 to X

′
, then ψY∐ Y ′ ≅ ψY ⊗ψY ′ under

the identification between tensor product and disjoint union given above.

Finally, we require that ψX×I = idE(X), so that the cylinder cobordism gives a trivial
linear map.

We note that ∅ is a closed (n − )-manifold; we claim that E(∅) = C. Indeed, since

E(X) = E(X∐∅) ≅ E(X)⊗C E(∅),

we conclude that E(∅) ≅ C. Any closed n-manifold Y is a cobordism from ∅ to ∅
and so yields a linear map ψY ∶ C → C. �e corresponding number ψY ∈ C is then a
diffeomorphism invariant of Y .

�is construction raises several questions:

. Do the numbers ψY , Y a closed n-manifold, determine the theory?

. Are there restrictions on the type of diffeomorphism invariants that can arise this

way? (e.g., is there a TQFT that produces the Euler characteristic?)

. Is E(X), X an (n − )-manifold, spanned by imψY ∈ E(X), for Y with ∂Y = X?

. Can we classify TQFTs? Is there a moduli space of them?

Proposition . (Exercise) Let A be a commutative ring with unit, andM ,N modules
over A. �ese modules are finitely generated, projective, and in duality if and only if

there exists homomorphisms of A-modules α ∶ A→ M⊗AN and β ∶ N⊗AM → A such

that

(M ⊗ β)(α ⊗M) = idM and (β ⊗ N)(N ⊗ α) = idN .
Note that in duality means that the map β̄ ∶ N → HomA(M ,A) induced by β is an

isomorphism.

Proof: A proof in the category of spaces and stable maps is given in Spanier’s topology

book. ∎

Such maps α and β arise in a TQFT: Let X be an oriented (n − )-manifold, and
let U ≅ X × I be the cobordism from ∅ to X∐ X̄ (where X̄ is X with the reversed

orientation).�en

α = ψU ∶ C→ E(X)⊗ E(X̄).
Similarly, the opposite cobordism V = X × I from X∐ X̄ to ∅ gives

β = ψV ∶ E(X̄)⊗ E(X)→ C.

To verify that α and β satisfy the identity above, observe that the cobordism X × I∐U ,

glued to the cobordism V∐X × I, gives an S-shape diffeomorphic to X × I. Hence,

(ψV ⊗ ψX×I) ○ (ψX×I ⊗ ψU) = ψX×I = idE(X) .

A similar combination of cobordisms gives the other identity. Hence, β̄ ∶ E(X̄) →
E(X)∗ is an isomorphism, and from now on we identify the two.
We can then ask what the map

C→ E(X)⊗ E(X)∗

induced from α and β̄ is. In fact, it is the adjoint to id ∈ HomC(E(X), E(X)), so if
{b , . . . , bk} is a basis for E(X), and {b∗ , . . . , b∗k} the corresponding dual basis with
respect to β̄, we claim that

α() =
k

∑
i=

b i ⊗ b∗i .

Similarly, β ∶ E(X)∗ ⊗ E(X) → C gives the evaluation map, adjoint to idE(X). We
conclude that ψX×S  = dim E(X) ∈ Z.

2.2 Example of a TQFT

Example . (Dijkgraaf-Witten toy model) We discuss a TQFT in dimension n, asso-
ciated to a finite group G. (In fact, this also generalizes to compact Lie groups.) We first

describe the invariants associated to closed n-manifolds Y . ψY is a certain weighted

sum of isomorphism classes of principal G-bundles over Y . Specifically, for a principal

G-bundle P → Y , the weight is /∣Aut P∣, where Aut P is the group of automorphisms
of P covering idY .�us,

ψY =∑
[P]



∣Aut P∣ ,

where [P] ranges over the isomorphism classes of principal G-bundles over Y . Assum-
ing that Y is connected, from covering space theory, we have that such classes are in

bijection with representations Hom(π(Y),G) up to conjugacy, as well as with free ho-
motopy classes [Y , BG] = [Y ,K(G , )].
�us, given a particular p ∶ P → Y , P comes from a homomorphism ρ ∶ πY → G

as follows: P ≅ Ỹ ×ρ G, where Ỹ has a le� action of π(Y) by deck transformations.
�us, for α ∈ π, (y, g) ∼ (αy, ρ(α)g). �ere is then a residual right action of G on
Ỹ ×ρ G, and automorphisms of P le� to πY ×G-equivariant maps θ ∶ Ỹ ×G → Ỹ ×G.

By the G-freeness of Ỹ ×G, these are the same as π(Y)-equivariant maps Ỹ → Ỹ ×G.

�en (y, ) ↦ (y′ , θ), θ ∈ G, where p(y) = p(y′). Since y and y′ are in the same
fiber, they are related by a deck transformation, and so we can rewrite this as a map

(y, )↦ (y, θ(y)), for some θ(y) ∈ G.
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Furthermore, the equivariance of this map θ means that it commutes with ρ(α)
for all α ∈ π(Y), so the θ all lie in the centralizer of ρ(π(Y)). As a result,
Aut(P) ≅ CG(ρ(π(Y))). Consequently, the isomorphism class of P is isomorphic
to G/CG(ρ(π(Y))), so

∑
[P]

∣G∣
∣CG(ρ(π(Y)))∣ = ∣Hom(π(Y),G)∣.

�erefore, ∣G∣∑∣P∣ /∣Aut(P)∣ = ∣Hom(π(Y),G)∣, so

ψY = ∣Hom(π(Y),G)∣
∣G∣ .

We nowdescribe the vector spaces associated to an (n−)-manifold X andmaps asso-
ciated to cobordisms. Let PX be the set of isomorphismclasses of principalG-bundles on

X, and let E(X) = CPX . Now let Y be such that ∂Y = X, and take ψY() = E(X) = CPX

to be determined as follows. Let P → X be a G-bundle over X.�en

ψY()(P) =∑
[Q]



∣Aut(Q)∣ ,

where [Q] ranges over isomorphism classes of G-bundles over Y such that Q∣∂Y = P,

and where the isomorphisms fix Q∣∂Y .
We can view this /∣Aut(Q)∣ factor as coming from a transfer map, or an umkehr

map. From a different perspective, given a cobordism Y from X to X, we obtain re-

striction maps

PX
ρin←Ð PY

ρoutÐÐ→ PX .

Applying the contravariant functor Hom(−,C) gives

CPX
ρ∗inÐ→ CPY

ρ∗out←ÐÐ CPX .

We then define an umkehrmap ρ!out ∶ CPY → CPX as follows: given f ∈ CPY and P → X
a G-bundle over X,

ρ!out( f )(P) =∑
[Q]

f (Q)
∣Aut(Q)∣ ,

where [Q] ranges over isomorphism classes of G-bundles on Y with Q∣X = P. Conse-

quently, (ρ!out) ○ ρ∗in ∶ CPX → CPX gives the map ψY . ∎

�is example shows how in order to determine how bundles on X relate to those

over X, we consider all bundles on Y restricting to X, then restrict all these to X.

2.3 Categorical Reformulation of TQFTs

To express the definition of a TQFTmore categorically, we introduce the language of -

categories: if C is a -category, it has objects, and for a, b ∈ ObjC, MorC(a, b) is itself a
category, with objects morphisms from a to b and morphisms “-morphisms” between

these morphisms.

Example . Let C be the -category of C-vector spaces.�e objects of C are C-vector
spaces. For V ,V ∈ ObjC, Mor(V ,V) is itself a category, with ObjMor(V ,V) =
HomC(V ,V). For L , L ∶ V → V, Mor(L , L) consists of pairs of isomorphisms
(θ ∶ V → V , θ ∶ V → V) such that

V

θ 

��

L // V

θ

��
V

L // V

commutes. In fact, we will see that this -category is the “target” of our TQFT. ∎

3 Categorical Description of TQFTs 1/17/08
3.1 Categorical Background

Wemakemore precise the idea that a TQFT is a functor from some cobordism category

Cobn of (n − )- and n-manifolds to some linear category, taking∐ to ⊗. Recalling the
Atiyah-Segal description of a TQFT, we observe that this cobordism category should

have objects (n − )-manifolds X, as well as two types of morphisms: diffeomorphisms
X → X of (n − )-manifolds, and cobordisms Y ∶ X → X. Such data describe a

double category.

Definition . (Mac Lane []) A double category C consists of the following data:
• objects ObjC,
• for a, b ∈ ObjC, sets of horizontal morphisms Morh(a, b) and vertical mor-
phismsMorv(a, b), forming categories Ch and Cv , respectively,

• for a, b, c, d ∈ ObjC, α ∈ Morh(a, b), α ∈ Morh(c, d), ϕ ∈ Morv(a, c), and
ϕ ∈Morv(b, d), so that the horizontal and vertical morphisms form a square

a
α //

ϕ

��

b

ϕ

��
c

α // d
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a set Mor(α , α , ϕ , ϕ) of -morphisms, with maps σh , τh to MorCh and σv , τv
to MorCv taking A ∈Mor to the “sides” of the square,

• horizontal and vertical composition for -morphisms, corresponding to composi-

tion of horizontal and vertical morphisms, respectively. ∎

Example . An example of a double category is the category of sets, where both hor-
izontal and vertical morphisms are set maps and where there exists exactly one -

morphism for each commuting square of set maps. ∎

Example . A -category is a double category where either the horizontal or vertical
morphisms are only the identity morphisms on the objects. ∎

Example . Our cobordisms categories Cobn are such double categories:

• the objects are closed, oriented (n − )-manifolds,
• the horizontal morphisms Morh(X , X) are orientation-preserving diffeomor-
phisms from X to X,

• the vertical morphisms Morv(X ,Y) are oriented n-manifolds W , with orienta-

tion-preserving diffeomorphisms ∂W → X∐Y , where gluing gives composition,

• the -morphisms are diffeomorphisms of cobordisms compatible with prescribed

diffeomorphisms of the boundaries. Specifically, if Wi ∈ Morv(X i ,Yi), i = , ,
are cobordisms and if ϕ ∈ Morh(X , X) and ψ ∈ Morh(Y ,Y) are diffeomor-
phisms, then A ∈ Mor(ϕ,ψ,W ,W) is a diffeomorphisms A ∶ W → W such

that A∣X = ϕ and A∣Y = ψ. Such morphisms are composed horizontally by func-

tion composition and vertically by gluing.

More precisely, given a cobordismW ∶ X → Y , we really have a local diffeomorphism

from a neighborhoodU(∂W) of ∂W to X×[, є)∐Y ×(−є, ] – i.e., a collar structure
onW compatible with X and Y .�is ensures that cobordisms can be glued smoothly.∎

Example . Our earlier category VectC of C-vector spaces is also a double category:
• the objects are C-vector spaces,
• the horizontal morphisms are linear isomorphisms,

• the vertical maps are linear maps,

• the -morphisms are commuting squares of such linear maps, with one -mor-

phism for each such square. ∎

�en a TQFT is a functor of double categories E ∶ Cobn → VectC taking∐ to⊗. Since
the -morphisms of VectC are relatively limited, the linear transformation associated to
a cobordism depends only on the diffeomorphism type of the coboordism.

We can express this tensorial property categorically as follows:

Definition . A symmetric monoidal category (SMC) C is a category with a functor
C × C → C with natural associativity and twist isomorphisms αX ,Y ,Z ∶ X ⊗ (Y ⊗ Z) →
(X ⊗ Y)⊗ Z and τX ,Y ∶ X ⊗ Y → Y ⊗ X satisfying the following relations:

• τY ,X ○ τX ,Y = idX⊗Y ,

• the “Stasheff pentagon” below commutes:

(X ⊗ (Y ⊗ (Z ⊗W)))αX ,Y ,Z⊗W //

idX ⊗αY ,Z ,W

��

(X ⊗ Y)⊗ (Z ⊗W)αX⊗Y ,Z ,W// ((X ⊗ Y)⊗ Z)⊗W

X ⊗ ((Y ⊗ Z)⊗W) αX ,Y⊗Z ,W // (X ⊗ (Y ⊗ Z))⊗W

αX ,Y ,Z⊗idW

OO

• the associativity and twist isomorphisms are compatible:

X ⊗ (Y ⊗ Z) αX ,Y ,Z //

idX ⊗τY ,Z

��

(X ⊗ Y)⊗ Z
τX⊗Y ,Z // Z ⊗ (X ⊗ Y)

αZ ,X ,Y

��
X ⊗ (Z ⊗ Y) αX ,Z ,Y // (X ⊗ Z)⊗ Y

τX ,Z⊗idY// (Z ⊗ X)⊗ Y

A symmetric monoidal functor preserves α, τ, and ⊗. ∎

3.2 One-Dimensional TQFTs

We classify -dimensional TQFTs. �e objects of Cob are oriented -manifolds, or
signed points. Hence, for a TQFT E, we assign V = E(●+) to ●+, and its dual V∗ to ●−.
�e cobordism

+

−

gives a map V ⊗V∗ → C, the reverse cobordism givesC→ V∗ ⊗V ≅ End(V) taking 
to idV , and the cobordism ●+× I from ●+ to itself gives idV . Hence, since S decomposes
as

#=

E(S) = dimC V . Since the only -manifolds up to diffeomorphism are disjoint unions

of Ss and intervals, these data determine E entirely. In fact, there is an equivalence of

categories between -dim’l TQFTs (over C) and finite dimensional C-vector spaces.
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3.3 Two-Dimensional TQFTs

We now address -dimensional TQFTs. Since a closed oriented -dimensional mani-

folds is isomorphic to∐k S
 for some unique k ≥ , we can simplify our cobordism and

linear categories somewhat. We fix a particular S, and take the objects ofCob to be the
nonnegative integers, Z+. For m, n ∈ Z+, Mor(n,m) consists of orientation-preserving
diffeomorphism classes of cobordisms Σ with n+m boundary components, along with
parameterizations ∂inΣ → ∐n S

 and ∂outΣ → ∐m S, where the diffeomorphisms are

taken rel ∂Σ.

We note that there are then monoid maps Sn → Mor(n, n), corresponding to the
cobordisms that permute n copies of S.

Similarly, given aC-vector spaceV , we define a category End(V) as follows: as above,
the objects are Z+, and Mor(p, q) = HomC(V⊗p ,V⊗q).
We observe that both categories are SMCs, with ⊗ = + on objects and ∐ and ⊗ on

morphisms, respectively.

Definition . (Mac Lane) A PRO is an SMC C whose objects are Z+, where ⊗ = + on
the objects. A PROP is a PRO with permutations, i.e., with monoid maps ϕn ∶ Sn →
C(n, n) compatible with the SMC structure:
. if σ ∈ Sm and σ ∈ Sn , then ϕ(σ × σ) = ϕ(σ)⊗ ϕ(σ).
. if tm ,n ∈ Sm+n exchanges the first m and last n letters, then ϕ(tm ,n) = τm ,n in C. ∎

�en the characterization above gives a -dim’l TQFT as a functor of PROPs from

Cob to End(V) for some finite-dimensional vector space V .
Proposition . (Abrams [], “folk” theorem) A -dim’l TQFT is the same as giving
a finite dimensional associative, commutative, unital C-algebra A, with a linear map
θ ∶ A→ C such that ⟨x , y⟩ = θ(xy) is a nondegenerate bilinear form. (Such an object is
called a Frobenius algebra.) ∎

Abrams further proves that the category of -dim’l TQFTs, with morphisms mon-

oidal natural transformations, is isomorphic to the category of Frobenius algebras, with

morphisms isomorphisms of FAs.

(In fact, this structure will not suffice for the more general TQFTs we discuss later:

in particular, we would like a TQFT that gives A = H∗(M; k), where A ⊗ A → A is

the intersection product and θ is the projection to H(M; k) ≅ k. Since this product

is graded commutative, we must introduce some sort of graded Frobenius algebra to

describe this notion.)

As a result of this proposition, if E is a -dim’l TQFT, then E(S × S) = dimC A (or

in the graded case when A = H∗M, the Euler characteristic of M, because the sum of
dimensions will alternate).

We now indicate how the Frobenius algebra structures arise from a -dim’l TQFT E.

Suppose that A = E().�en the multiplication µ ∶ A⊗ A→ A is µ = E(P), where P is
the pair of pants

Letting T be the cobordism switching two copies of S, and observing that T ○ P ≅
P, we have that τµ = µ, so A is a commutative algebra. Associativity is given by the

diffeomorphism between (P∐ S×I)○P and (S×I∐ P)○P. Furthermore, θ = E(D),
where D here is a cobordism from S to ∅. As a cobordism from ∅ to S, it provides
the unit η ∶ C→ A.

We summarize some other properties of A resulting from the TQFT structure:

Proposition . Suppose E is a TQFT as above, and A = E().
. �ere exists a distinguished element α ∈ A corresponding to the cobordism

and if ψg is the invariant corresponding to the genus-g surface Σg , then ψg =
θ(α g).

. If {e i} is a C-basis for A and {e∗i } is its dual basis with respect to ⟨−,−⟩, then
α = ∑i e i e

∗
i .

. Let ρ ∶ A → End(A) be the regular representation induced by le� multiplication,
so that a ↦ La .�en for any a ∈ A, θ(aα) = tr(ρ(a)). (�us, θ is o�en called the
trace map.) Furthermore, θ(α) = dimC A = tr idA.

. A is semisimple as an algebra (so that A as a le� module over itself is isomorphic

to a direct sum of -dim’l A-modules) if and only if α is invertible. (Note that

multiplication by α corresponds to E of the cobordism from S to S with one hole.)

. If we rescale θ ∶ A → C by a factor λ, we change ψg = E(Σg) to λ−gψg =
λ−χ(Σ g)/ψg . ∎

4 Properties of TQFTs 1/22/08
4.1 Categories of TQFTs and Frobenius Algebras

Recall from last time Abrams’s result that the category of -dimensional TQFTs, with

morphismsmonoidal natural isomorphisms, is isomorphic to the category of Frobenius

algebras, with morphisms isomorphisms of such algebras. More explicitly, a morphism

of TQFTs A→ A′ is then a collection of linear isomorphisms

Φn = Φ⊗n
 ∶ A⊗n → (A′)⊗n

,
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wherewe have of course used the identificationA(∐n S
) ≅ A(S)⊗n .�en a cobordism

Σ from n to m gives by naturality a commuting square

A⊗n
Φn //

A(Σ)
��

(A′)⊗n

A′(Σ)
��

A⊗m
Φm // (A′)⊗m

We also ask why only isomorphisms of Frobenius algebras are allowed. In fact, any

map ϕ ∶ A → A′ of Frobenius algebras is an isomorphism. Since ϕ preserves the inner
products on A and A′, it also preserves the isomorphisms ν ∶ A → A∗ and ν′ ∶ A′ →
(A′∗) adjoint to these inner products. Hence, the diagram

A
ϕ //

ν≅
��

A′

ν′≅
��

A∗ (A′)∗
ϕ∗oo

commutes, so ϕ has an inverse ν−ϕ∗ν′.
Finally, we remark that an alternate definition of a Frobenius algebra is as follows:

• A finite dimensional unital commutative algebra A over C,
• A counital coalgebra structure on A, such that the coproduct map Ψ ∶ A→ A⊗ A

is a map of A-A-bimodules.

�e counit in this coalgebra structure is the trace map θ ∶ A→ C.

4.2 Proofs of Properties of TQFTs

We now prove some of the properties listed in Proposition ..

Proof (Prop. .(, , )): Suppose that Σg is a genus-g closed oriented surface.�en Σg

is diffeomorphic to

⋮g copies # ⋮ #

so therefore ψg = E(Σg) = θ(µn−(α ⊗ . . . ⊗ α)) = θ(α g).
Recall that the surface S

gives a map E(S) ∶ C → A⊗ A such that E(S) = ψ ○ η, where η is the unit map C → A

and ψ ∶ A → A ⊗ A is the coproduct map associated to a “pair of pants” P. If {e i} is
a C-basis for A, with dual basis {e∗i } with respect to the pairing on A, then we have

already computed that

E(S)() =∑
i

e i ⊗ e∗i .

Hence, composing S with a pair of pants P′ yields that α = E(P′)(E(S)()) = ∑i e i e
∗
i .

As for part (), let ρ ∶ A → End(A) be the map determined by the regular represen-
tation. Since the map

A
ρÐ→ End(A) ≅ A⊗ A∗

A⊗ν←ÐÐ
≅

A⊗ A

defines the coproduct map ψ of A, the map tr ○ρ is equal to

A
ψÐ→ A⊗ A

⟨−,−⟩ÐÐÐ→ C.

Since ⟨−,−⟩ = θ ○ µ, tr(ρ(a)) = (θ ○ µ ○ ψ)(a). Since

≅

wehave that (θ○µ○ψ)(a) = (θ○µ○(α⊗idA))(a) = θ(a⋅α). Hence, tr(ρ(a)) = θ(aα).∎

Note that θ(a ⋅ α), and not θ(a) only, gives the trace of a acting on A. �is is a

common error, even in published articles.

Before proving Prop. . (), we state some preliminary results.

Proposition . If A is a Frobenius algebra, and θ is replaced by θλ = λθ, λ ∈ C∗, then
ψg is changed to λ−gψg .

Proof: Note that Σg ≅ D#(P#P′)#g#D′, where D and D′ are disc cobordisms between
∅ and S, and P and P′ are pairs of pants. Consequently,

ψg = θ ○ (µ ○ ψ)g ○ η.
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Since µ, θ, and η are the defining data for the Frobenius algebra structure on A, wemust

determine the effect on ψ. In particular, ψ is defined by

A
νÐ→ A∗

µ∗Ð→ A∗ ⊗ A∗
ν⊗νÐÐ→ A⊗ A,

where ν ∶ A → A∗ is adjoint to ⟨−,−⟩ = θ ○ µ. Consequently, ν(a)(b) = θ(ab), so
νλ(a)(b) = θλ(ab) = λθ(ab), and thus νλ = λν. Hence, ν−λ = λ−ν, and so ψλ = λ−ψ.
Finally,

(ψλ)g = (θλ) ○ (µ ○ ψλ)g ○ η = λ−gθ ○ (µ ○ ψ)g ○ η = λ−gψg . ∎

Example . We examine these Frobenius algebra structures in the case of the Dijk-
graaf-Witten toy model of Example . in dimension . Recall that G is a finite group,

and A(X) = CPX , where PX is the set of isomorphism classes of principal G-bundles on

X, and is equal to

[X , BG] = πMap(X , BG).

LetQ be the -to- pair of pants.�en restriction to the ingoing and outgoing boundary

components yields maps

PS 
ρin←Ð PQ

ρoutÐÐ→ PS  × PS  .

Since PX = [X , BG], this set depends only on homotopic information. �en because
Q ≃ 8, PQ ≅ P8. Making this replacement and applying Hom(−,C), we obtain

CPS
ρ∗inÐ→ CP8

ρ∗out←ÐÐ CPS ⊗CPS .

Additionally, we have an “umkehr” map ρ!in ∶ CP8 → CPS defined as

ρ!in(ϕ)([γ]) =∑
[β]

ϕ(β)
∣Aut β∣ ,

where the sum ranges over classes [β] of G-bundles on 8 restricting to β on the “outer”

circle of the 8. Furthermore, we can express such isomorphism classes as follows: PS  =
πLBG, which is part of a fibration G ↪ LBG → BG. Applying π∗ yields the long exact
sequence

G = πBG → G → πLBG → ∗,

where πBG = G acts on πG = G by conjugation. Hence, we claim that πLBG is

isomorphic to the conjugacy classes ofG. Alternately, we will see later that for a general

topological group G there is a homotopy equivalence LBG ≃ EG ×G Gconj, so when G

is discrete the path components do correspond to these conjugacy classes.

Similarly, P8 = πMap(8, BG) is part of a fibration

ΩBG ×ΩBG ≅Map(8, BG)↪Map(8, BG)→ BG ,

which similarly yields that πMap(8, BG) ≅ (G × G)/conj. Consequently, the map
between the P-sets above become

G/conj← (G ×G)/conj→ G/conj ×G/conj,

with [gh]↤ [g , h]↦ ([g], [h]).
Furthermore, the algebra A = CPS = CG/conj is the set of class functions of CG , and

has the following multiplication map µ: if ϕ , ϕ ∈ CG/conj, then

µ(ϕ , ϕ)([g]) = ∑
[g ,g]∈(G×G)/conj
[g g]=[g]∈G/conj

ϕ(g)ϕ(g).

�e dual multiplication on (CG)∗ yields the multiplication of the group ring CG. It is

standard from the representation theory of finite groups that the elements∑g zg g ∈ CG

such that the zg are constant on conjugacy classes are precisely the center Z(CG) ofCG.

Hence, A∗ = Z(CG), with themultiplication induced from the group ring structure. (In
order to determine this, consider the umkehr map ρ!out.) ∎

5 Semisimple and Graded Frobenius Algebras 1/24/08
5.1 Semisimple Algebras and Modules

We recall some notions from module theory. (See Anderson and Fuller [] for more

details.) Let R be a unital ring.

Definition . Suppose T is a le� R-module.�en T is simple or irreducible if T has
no nontrivial R-submodules. T is semisimple if for some index set I, T ≅ ⊕α∈I Tα ,

where each Tα is simple. ∎

Note that T is simple if and only if T ≅ R/M, whereM is a maximal le� ideal of R.

Fact . SupposeM is a le� R-module.�e following are equivalent:
. M is semisimple,

. every submodule ofM is a direct summand,

. every short exact sequence of R-modules → K → M → N →  splits. ∎

Lemma . (Schur) If A is a finite-dimensional algebra over an algebraically closed
field k, and M and N are both irreducible le� A-modules, then HomA(M ,N) =  if
M ≇ N , and HomA(M ,M) ≅ k ⋅ idM . ∎
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Corollary . If A as above is also commutative and M ≠  is irreducible, then

dimk M = .

Proof: Note that multiplication by a ∈ A is an A-module homomorphism by the com-
mutativity of A, so am = λam for some λa ∈ k. Since M is simple, M = A ⋅m for some
m ≠  inM, soM = k ⋅m. Hence, dimk M = . ∎

Consequently, if A is a semisimple Frobenius algebra over C, then A ≅ ⊕β∈I Cβ as

A-modules.

�eorem . If A is a semisimple commutative Frobenius algebra, then A has aC-basis
{e i}ni= of orthogonal idempotents (so that e i e j =  if i ≠ j and ei = e i).

Proof: Write A ≅⊕n
i=Ci as A-modules. Note that we can choose generators a i for the

Ci such that a ia j =  for i ≠ j: in general suppose that C ⊂ A is an irreducible submod-

ule, hence a direct summand isomorphic to C by semisimplicity. Pick a generator α of

C, and let mC ∶ A→ C be the (surjective) action map mC(a) = aα. Let K = kermC .

We claim that K is a semisimple commutative Frobenius algebra. First, since K is

an A-submodule of A, the multiplication on A gives a map µ ∶ K ⊗ K → K ⊗ A → K.

Take k ∈ K nonzero. Since ⟨k,−⟩ ≠  ∈ A∗ = K∗ ⊕ C∗, and since k ⋅ β =  for each
β ∈ C, ⟨k,−⟩ restricted to K is nonzero. Finally, K is semisimple as a K-module since A
is semisimple and sincemultiplication by C acts by  on K. Iterating this decomposition

on K produces the desired basis for A.

Let b i be the dual basis of the a i with respect to the pairing ⟨−,−⟩, so that θ(a ib j) =
δ i j . Write b i = ∑k z i kak , so that b ia j = z i ja


j . Hence, z i jθ(aj ) = δ i j . Taking i = j,

θ(aj ) ≠ , so aj ≠ . Since the Ci have dimension , a

j = c ja j for some c j ∈ C×. We

then define e j = a j/c j , and have that ej = e j . ∎

Let { f i} be the ⟨−,−⟩-dual basis to the basis {e i} described above.�en f i = ∑ j z i je j

for z i j ∈ C, so f i e j = z i je

i = z i je j . �en δ i j = θ( f i e j) = z i jθ(e j). If i = j, then

θ(e i) = z−i i ≠ , and if i ≠ j,  = z i jθ(e j), so z i j = . Consequently, f j = e j/θ(e j).

Corollary . Dimension-n commutative semisimple Frobenius algebras over C are
classified by n nonzero complex numbers z , . . . , zn taking the values z i = θ(e i). Hence,
two such algebras are isomorphic iff they have the same list of such complex numbers.∎

Lemma . Let A be a finite-dimensional commutative algebra over an algebraically
closed field k. Suppose M ⊂ A is irreducible. If M is not a field, then it has nilpotent

elements.

Proof: Exercise. ∎

5.2 Proofs of Properties of TQFTs, Continued

We now return to the proof of Proposition ., part ().

Proof: Let A be a finite-dimensional, commutative Frobenius algebra over C.
Suppose A is also semisimple. We show the distinguished element α is a unit. Write

A = ⊕n
i=Ce i with the e i and f i as above. Recall that α = ∑n

i= e i f i = ∑n
i= e i/θ(e i).

Noting that A = ∑n
i= e i , then α− = ∑n

i= θ(e i)e i is a two-sided inverse to α. Hence α

is a unit.

Now suppose α is a unit in A. We show A is semisimple. By the contrapositive to

Lemma ., it suffices to show A contains no nilpotents. Let N ⊂ A be the ideal of

nilpotents in A (i.e., rad ). We show αN = , so that N =  since α is a unit.

Filter A as follows. Let

S = ann(N) ⊂ A = {a ∈ A ∣ aN = }

be the annihilator of N in A. We then wish to show α ∈ S. Define the S i inductively as
follows: let π i ∶ A→ A/S i− be the projection, and let

S i = π−i (ann(N(A/S i−))) = {a ∈ A ∶ ax ∈ S i− for all x ∈ rad S i−}.

Since S i− ⊂ S i , this gives a filtration S ⊂ . . . ⊂ Sk = A of A. Pick a C-basis {b i}ni=
for A by picking one for S, then for S, and so forth. Suppose that b i ∈ S j ∖ S j− and
a ∈ N . �en ab i is also nilpotent, so ab i ∈ S j− and hence can be expressed as a linear
combination of the bk , k < i. As a result, θ(ab ib∗i ) = ⟨ab i , b∗i ⟩ = . Consequently,
b ib

∗
i N ⊂ ker θ.

We show that ker θ contains no nonzero ideals. Suppose that I ⊂ ker θ is nonzero,

and take a ∈ I nonzero. Hence, A ⋅ a ⊂ I ⊂ ker θ, so ⟨a, b⟩ for all b ∈ A, contradicting

the nondegeneracy of ⟨−,−⟩.
Hence, we conclude that b ib

∗
i N = , so αN = ∑n

i= b ib
∗
i N = . ∎

5.3 TQFTs into Graded Vector Spaces

We now consider TQFTs with values taken in graded vector spaces over C. As before,
if V∗ is a graded vector space, we can define an endomorphism PROP End(V), with
morphisms End(V)(p, q) = HomC(V⊗p

∗ ,V
⊗q
∗ ) maps of graded vector spaces. �en a

TQFT is a monoidal functor E ∶ Cob → End(V). Consequently, V∗ = E() is a graded-
commutative Frobenius algebra, so that ab = (−)∣a∣∣b∣ba, with a map θ ∶ V∗ → C giving
a nondegenerate pairing ⟨a, b⟩ = θ(ab).

Example . Let M be a connected, closed, oriented n-dimensional manifold. �en

H∗(M;C) is a graded-commutative Frobenius algebra over C. In particular, the diag-
onal map ∆ ∶ M → M ×M induces a graded-commutative product

∪ ∶ H∗(M)⊗H∗(M) ≅ H∗(M ×M) ∆
∗

Ð→ H∗(M),
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namely cup product.�emap θ is given by θ(α) = ⟨α, [M]⟩, where [M] ∈ Hn(M) is the
fundamental class associated to the orientation of M. By Poincaré duality, this pairing

is nondegenerate, and its adjoint D(α) = α ∩M gives an isomorphism D ∶ H∗(M) →
Hn−∗(M) ≅ (H∗(M))∗.
�e coproduct on H∗(M) arises through a umkehr map construction. Recall that if

N is another closed manifold and f ∶ N → M a map, then f ! ∶ H∗(N) → H∗(M) is
defined by

H∗(N)
f ! //

DN≅
��

H∗+dimM−dim N(M)

Hdim N−∗(N)
f∗ // Hdim N−∗(M)

D−M ≅

OO

�en the coproduct ψ is ∆! ∶ H∗(M) → H∗(M × M) ≅ H∗(M) ⊗ H∗(M). �e dis-
tinguished element α ∈ H∗(M) is then ∆∗(∆!([])), where [] ∈ H(M) is the unit
class.

We describe this class via a Pontryagin-�om construction. Let η(∆(M)) be a tubu-
lar neighborhood of ∆(M) ⊂ M ×M, which is isomorphic to the normal bundle ν∆ of

∆(M) insideM ×M. Let

τ ∶ M ×M → M ×M/(M ×M ∖ η(∆(M))) = Th(ν∆)

be the quotient map. Let u ∈ Hn(Th(ν∆)) be the�om class.�en the umkehr map ∆!
can be expressed as

H∗(M) −∪uÐÐ→ H∗+n(Th(ν∆))
τ∗Ð→ H∗+n(M ×M),

and ∆∗ takes this class to H∗+n(M). Since the Euler class e(M) of M is described by

the image of [] ∈ H(M) under the composition

H∗(M) −∪uÐÐ→ H∗+n(Th(ν∆))→ H∗+n(η(∆(M))) ≅ H∗+n(M),

we observe that α = e(ν∆) = e(M). Observing that χM = ⟨e(M), [M]⟩, we obtain the
following proposition: ∎

Proposition . For the TQFT described in Example ., α = e(M) and ψ = θ(α) =
χM ∈ Z ⊂ C. ∎

As an exercise (from Milnor and Stasheff []) prove without our TQFT machinery

that e(M) = ∑i(−)∣e i ∣e i e∗i , where {e i} is a basis for H∗(M;C) and {e∗i } is its dual
basis with respect to the Poincaré duality pairing.�en χM = ∑i(−)i dimC H i(M).
Similarly, in Floer homology or quantum homology, there is a similar class called the

“quantum Euler class” (which sounds better than it actually is).

6 Conformal Field Theories 1/29/08

6.1 Conformal Field Theories

We now introduce a conformal cobordism category of + -dimensional oriented man-
ifolds, due originally to Segal []. LetMg ,n be themoduli space of Riemann surfaces
Σ of genus g, with n discs specified by a biholomorphic map ϕ ∶ ∐n

i= D

i → Σ, where

the ϕ(Di ) are pairwise disjoint. (We will give a more precise definition of this moduli
space below.)�ese data yield more information than simply placing marked points on

Σ, as each disc ϕ(Di ) has a specified complex structure from the canonical complex
structure on the standard disc D. Note thatM,n is the space

{biholomorphic maps ϕ ∶
n

∐
i=

Di → S with p.w.d. ϕ(Di )} /PSL(,C).

Definition . Define the Segal PROPM to have objects Z+, and to have morphisms
M(n,m) given by the moduli space of (possibly disconnected) Riemann surfaces Σ of
arbitrary genus, together with biholomorphic maps

ϕin ∶
n

∐
i=

Di → Σ and ϕout ∶
n+m
∐
i=n+

Di → Σ,

again with p.w.d. ϕ(Di )s. Note that the spaces of morphisms are then disjoint unions
of moduli spaces, where the surface Σ can have multiple components.

Composition is given by gluing along discs; since themaps to the embedded discs are

biholomorphic, this gluing preserves the complex structure on the surfaces. (To bemore

precise, a smaller disc is removed from each disc to be glued, and the remaining annuli

are identified.)�ese data determine a symmetricmonoidal category with product+ on
objects and∐ on surfaces. Sn acts onMg ,n by permuting the marked discs, so Sn × Sm
acts onM(n,m). ∎

Definition . (Segal) A conformal field theory (CFT) is a functor of PROPsM →
End(V), where V is a vector space (or a Hilbert space, where some care is needed to
introduce a topological tensor product). ∎

One can think of a CFT as a representation of moduli space. Unfortunately, there are

no known explicit examples of CFTs, although they can be proved to exist. A conjecture

related to topological modular forms is that tmf
(X) = [X ,CFT], where CFT is some

moduli space of conformal field theories, appropriately topologized, and should classify

bundles of CFTs. (Recent work by Stolz and Teichner addresses some of this; Pokman

Cheung’s thesis addresses CFTs where the allowed cobordisms are only annuli.)
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6.2 Topological Conformal Field Theories

As a way to interpolate between CFTs and TQFTs, we introduce the notion of a topo-
logical conformal field theory (TCFT), originally due to Manin.�is will associate to
every homology class (or every singular chain) ofM a linear map.

More precisely, to each closed -manifold S, we assign a cochain complex CS (over a

field k, for simplicity).�is assignment is monoidal, so that there are natural coherence

isomorphisms CS⊗CS ≅ CS∐ S . To a cobordism F between two -manifolds S → S,

we associate a cochain µF ∈ C∗(M(S , S);Hom(CS ,CS)), where Hom(C ,D) is the
chain complex of maps from chain complexes C to D.�ese µF cochains must exhibit

some compatibility, which we describe below. In the literature, µF is sometimes taken

to be a differential form, which introduces more considerations of the smooth topology

of the cobordism surfaces.

By the monoidal structure of this assignment, if π(S) = p and π(S) = q, then we

obtain that µF ∈ C∗(M(p, q);Hom(C⊗p ,C⊗q)). �e compatibility of these cochains
is then as follows: let µn ,m = ∑[F] µF , where the sum is taken over all diffeomorphism
classes of cobordisms n → m (including the disconnected ones). Let µ ∶ M(n,m) ×
M(m, p)→M(n, p) denote the composition map inM. Note that we have the maps

µ∗ ∶ C∗(M(n, p);Hom(C⊗n
,C⊗p))→ C∗(M(n,m) ×M(m, p);Hom(C⊗n

,C⊗p),
× ∶ C∗(M(n,m);Hom(C⊗n

,C⊗m)⊗ C∗(M(m, p);Hom(C⊗m
,C⊗p)

→ C∗(M(n,m) ×M(m, p);Hom(C⊗n
,C⊗p),

where µ∗ is induced from the µ map, and × arises from the external cross product on
homology and from the composition of chain maps. �e compatibility we require is

that µ∗(µn ,p) = µn ,m × µm ,p for all n,m, p.

We can rephrase this with an adjunction: define a new PROP C∗(M), where the ob-
jects are Z+, and where the morphisms are C∗(M)(n,m) = C∗(M(n,m); k). Com-
position is given by

C∗(M(n,m))⊗ C∗(M(m, p))→ C∗(M(n,m) ×M(m, p))→ C∗(M(n, p)),

where the first map is the Eilenberg-Zilber map on chains (i.e., the higher-dimensional

analogues of the “prism” operators dividing ∆n × ∆ into an (n + )-chain). �en a
TCFT is a functor of PROPs E ∶ C∗(M) → End(C∗), where C∗ is some chain complex
of k-modules. Hence, E() = C∗, and C∗ obtains a differential graded algebra (DGA)
structure from the pair-of-pants cobordism. For each p, q, we have an evaluation map

C∗(M)(p, q)⊗ C
⊗p
∗ → C

⊗q
∗

from the earlier cochain description. Applying homology, we obtain maps

H∗(M(p, q))⊗H∗(C∗)⊗p → H∗(C∗)⊗q
.

Since H(M(p, q)) is generated by the path components ofM(p, q), which give the
diffeomorphism classes of such cobordisms, we obtain a linear map for each such class.

�is is precisely a graded TQFT, or equivalently a graded Frobenius algebra with V∗ =
H∗(C∗). Hence, passing a TCFT through homology and taking the th-graded piece
gives a TQFT.

In order to understand TQFTs better, we analyze these chains in moduli space. Let

Fg be a fixed smooth surface of genus g. From classical Riemann surface theory,

Mg ,n = {(J , ϕ) ∶ ϕ ∶
n

∐
i=

Di ↪ Fg smooth, J a C-structure on Fg ∖ im ϕ}/Diff+(Fg).

�is is the same as our earlier description, since the smooth embedding determines

complex structures on the ϕ(Di ), whichwe extend to the rest of Fg . To complete this, we

invoke another theorem stating that almost complex structures on surfaces are actually

complex structures.

Note that Diff
+(Fg) acts transitively on Emb(∐n

i= D

i , Fg). Let ϕ be a fixed embed-

ding, and let Fg ,n = Fg ∖ im ϕ (so that Fg ,n has boundary). Let

J (Fg ,n) = {(J , ϕ) ∶ J a C-structure on Fg ,n}.

�en Diff
+(Fg) ⋅J (Fg ,n) gives all of the {(J , ϕ)} above, and the stabilizer of (J , ϕ) is

Diff
+(Fg ,n , ∂). Hence,

Mg ,n ≅ J (Fg ,n)/Diff+(Fg ,n , ∂).

�eorem . (Teichmüller) J (Fg ,n) ≃ ∗ for all g , n; the action of Diff+(Fg ,n) is free
if g ≥  and n > , and has finite stabilizers if n = . ∎

On account of this theorem, we obtain that for g ≥  and n > , Mg ,n ≃
BDiff

+(Fg ,n , ∂). Consequently, we can reinterpret a (T)CFT in terms of surface bun-
dles.

6.3 Reinterpretation of TCFTs Via -Categories

We define a new cobordism -category (in fact, a -PROP) Cob, with objects Z+, -
morphisms Mor(n,m) all cobordisms ∐n S

 → ∐m S, and -morphisms diffeomor-

phisms of cobordisms. (Hence, this preserves the automorphisms of the cobordisms

instead of quotienting out by them).

We describe a similar -PROP structure on End(C∗), where C∗ is a chain complex
over the field k. Let the objects be Z+, and let the -morphisms Mor(m, n) be chain
maps Hom(C⊗n

∗ ,C
⊗m
∗ ). Finally, let the -morphisms be chain homotopies of chain

maps. (Lurie calls such data an extended TQFT).
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Since each pair of objects n,m in Cob determines a category Mor(n,m), taking
the geometric realization BMor(n,m) on each category of -morphisms yields a topo-
logical category. (In fact, since Mor(n,m) is not a small category, we instead take the
geometric realization of its skeleton category; since the diffeomorphism classes of such

cobordisms form a set, this skeleton category is small, and therefore can be realized

geometrically.) Furthermore, by the above discussion,

BMor(n,m) =∐
[F]

BDiff
+(F),

where F ranges over classes of cobordisms from n circles to m circles. While this pro-

duces an equivalent cobordism category, the functors involved must still be changed to

reflect the geometric realization.

6.4 Algebraic Structures

A “metatheorem” stated in the physics literature ([]) asserts that if E is a chain-

complex-valued TQFT (e.g., a TCFT or an extended TQFT), then E(S) is a chain-
homotopy commutative DGA, and its Hochschild cohomology HH∗(E(S)) is self-
dual and is a Batalin-Vilkovisky (BV) algebra. (We do note that Chas and Sullivan have

shown HH∗(C∗M) is a BV algebra, and it is known that HH∗(C∗M) ≅ H∗LM for M
-connected.)

Definition . A Batalin-Vilkovisky algebra is a pair (A, ∆), where A is a graded-
commutative algebra, and ∆ ∶ A→ A is a degree- operator, such that

. ∆ = ,
. the derivator

{ϕ, θ} = (−)∣ϕ∣∆(ϕ ⋅ θ) − (−)∣ϕ∣∆(ϕ) ⋅ θ − ϕ ⋅ ∆(θ)

is a derivation in each variable. ∎

Chas and Sullivan [] andGetzler [] have shown independently that {−,−} satisfies
the graded Jacobi identity for a graded Lie algebra. Such a graded-commutative algebra

with a Lie bracket [−,−] that is a derivation in each variable is called a Gerstenhaber
algebra.

Example . (Samelson) �e homology A = H∗(ΩX) of a double loop space has a
Lie bracket with these properties. ∎

We will return to these algebraic notions later.

7 Hochschild and Cyclic Homology 1/31/08

7.1 Hochschild Homology and Cohomology

We introduce a few constructions in homological algebra that contain geometric con-

tent. (Good references for this material include an article by Loday andQuillen [] and

books by Loday [] and Weibel [, Ch. ].)

LetAbe an associative algebra over a commutative ground ring k. (More generally, we

could take A an A∞-algebra, although we will not do this here.) Define theHochschild
complex CH∗(A) by

⋯→ A⊗n+ bÐ→ A⊗n → ⋯→ A,

where CHn(A) = A⊗n+ and where b is defined by

b(a , . . . , an) =
n−
∑
i=

(−)i(a , . . . , a ia i+ , . . . , an) + (−)n(ana , . . . , an−).

(For convenience, we o�en write (a , . . . , an) for a⊗⋯⊗an .) Computation shows that

b = , so CH∗(A) is a chain complex and its homology H∗(CH∗(A)) is defined to be
theHochschild homology of A.
Consider the acyclic bar complex Cbar∗ (A)

⋯→ A⊗n+ b′Ð→ A⊗n+ → ⋯→ A⊗

with differential

b′(a , . . . , an+) =
n

∑
i=

(−)i(a , . . . , a ia i− , . . . , an+).

Note that Cbar∗ (A) has an augmentation map є ∶ A⊗ → A given by є(a, b) = ab. �e

map s ∶ A⊗n → A⊗n+ with

s(a , . . . , an) = (, a , . . . , an)

assembles to give a degree- map s with sb′ + b′s = id. Hence, id is chain-homotopic to
, so the augmented complex Cbar∗ (A)→ A is contractible, hence acyclic.

If A is projective over k (as is the case when k is a field), Cbarn (A) = A⊗n+ is a pro-
jective A⊗ Aop module for all n ≥ . Hence, Cbar∗ (A) gives a projective resolution of A
as an A⊗ Aop-module. Considering this resolution as le� A⊗ Aop-modules, and A as a

right A⊗ Aop-module, then ψn ∶ A⊗A⊗Aop C
bar
n (A)→ A⊗n+ given by

ψ(α ⊗ (a , . . . , an+)) = (an+αa , a , . . . , an)
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is an isomorphism of k-modules. �ese maps assemble into a chain isomorphism

ψ ∶ A ⊗A⊗Aop C
bar
∗ (A) → CH∗(A). Passing to homology, we obtain the homological

characterization

HH∗(A) ≅ TorA⊗Aop

∗ (A,A)

of Hochschild homology.

In fact, if M is an A-A-bimodule, hence a right A ⊗ Aop-module, we define the

Hochschild homology of Awith coefficients in M to be

HH∗(A,M) = TorA⊗Aop

∗ (M ,A)

and note that we may compute it as H∗(M ⊗A⊗Aop C
bar
∗ (A)).

�ere is also a theory of Hochschild cohomology, defined as

HH∗(A,M) = Ext∗A⊗Aop(A,M).

If we define CH∗(A,M) = HomA⊗Aop(Cbar∗ (A),M) and note that then CHn(A,M) ≅
Homk(A⊗n ,M) with differential β given by

(βϕ)(a , . . . , an) = aϕ(a , . . . , an) +
n−
∑
i=

(−)iϕ(a , . . . , a ia i− , . . . , an)

+ (−)nϕ(a , . . . , an−)an

for ϕ ∈ Hom(A⊗n− ,M), then we observe thatHH∗(A,M) = H∗(CH∗(A,M)) as well.

7.2 Cyclic Homology

We note that CHn(A) has an action by Z/(n + ) = ⟨t⟩ given by t(a , . . . , an) =
(−)n(an , a , . . . , an+). Suppose that k is a field of characteristic . If M has an ac-

tion of a group G, let M//G denote the coinvariant module M ⊗kG k. �en modding

out CH∗(A) by these Z/n actions, we obtain a chain complex

⋯→ A⊗n+//(Z/n + ) bÐ→ A⊗n//(Z/n)→ . . . → A.

�e homology of this complex is Connes’s cyclic homology. Similarly, homology of the
complex (Homk[Z/(n+)](A⊗n+ , k), β) is Connes’s cyclic cohomology.
Over more general ground rings k, however, this process of taking coinvariants is too

brutal, and instead we must use a resolution of k over k[Z/n] at each n. (�is is due to
Loday and Quillen [].) Specifically, let tq generateZ/q, and let Nq = ∑q−

i= t
i
q . We then

form the first-quadrant double complex CC∗(A):

⋮

b

��

⋮

−b′
��

⋮

b

��
A⊗

b

��

A⊗

−b′
��

−too A⊗

b

��

Noo ⋯−too

A⊗

b

��

A⊗

−b′
��

−too A⊗

b

��

Noo ⋯−too

A A
−too A

Noo ⋯−too

�e even columns are copies of the complex (CH∗(A), b), and the odd rows are copies
of the augmented complex (Cbar∗ (A)→ A, b′).�e horizontal maps in level n alternate
between  − tn and Nn . Computation shows that this is a double complex (so that the

squares anticommute), so its total complex TotCC∗(A) is a chain complex. We define
the cyclic homology of A to be HC∗(A) = H∗(TotCC∗(A)).
By filtering CC∗(A) by rows, we see that there is a spectral sequence taking the group

homology modules H∗(Z/(n + );A⊗n+) to HC∗(A). Since

Hp(Z/n,M) =
⎧⎪⎪⎨⎪⎪⎩

M//(Z/n), p = ,
, p ≠ ,

when char k = , this complex reduces to Connes’s original definition in the charac-
teristic- case. Hence, Loday and Quillen’s formulation properly generalizes Connes’s

original construction.

We nowproduce a degree- operator onHH∗(A) from the action of these finite cyclic
groups. Define B ∶ A⊗n → A⊗n+ by B = ( − tn+)sNn . Note that since N( − t) = ,
B = . Loday and Quillen note that the double complex CC∗(A) can be simplifed by
killing the odd (acyclic) columns; doing so introduces this B map to form the complex

B∗:
⋮

b

��

⋮

b

��
A⊗

b

��

A⊗

b

��

B

bbEEEEEEEEE

A⊗

b

��

A⊗

b

��

B

bbDDDDDDDD
B

__????????

A A

B

bbEEEEEEEE

B

__????????
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We also note that this complex is CH∗(A) ⊗ k[c], where ∣c∣ = , and that k[c] ≅
H∗(CP∞; k) = H∗(BS; k). We claim that B∗ is quasi-isomorphic (i.e., has a map in-
ducing an isomorphism in homology) to TotCC∗(A). In fact, the map x ↦ (x , sNx)
gives a map B∗ → TotCC∗(A) which can be shown to induce an isomorphism in ho-
mology.

Example . We can compute that HC∗(k) ≅ k[c] ≅ H∗(BS; k). ∎

Example . If V is a vector space and T(V) =⊕∞
i= V

⊗n its associated tensor algebra,

then
HC∗(T(V)) ≅⊕

n

H∗(Z/n;V⊗n).
∎

7.3 S-Actions and the Free Loop Space

We now relate these finite cyclic groups to the circle group S ⊂ C. Note that the cyclic
groups are precisely the finite subgroups of S. We also have a simplicial description of

S, with one -simplex ∗ and one nondegenerate -simplex i.
If X● is a simplicial set, let d i ∶ Xk → Xk− and s i ∶ Xk → Xk+,  ≤ i ≤ k, be the face

and degeneracy maps, respectively, subject to the usual simplicial identities. �en the

geometric realization of X● is

∣X●∣ = (
∞
∐
k=
∆
k × Xk)/∼,

where ∼ is the equivalence relation generated by (δ i t, x) ∼ (t, d ix) and (σ i t, x) ∼
(t, s ix). Here, δ i ∶ ∆k → ∆k+ and σ i ∶ ∆k+ → ∆k are the coface and codegeneracy

maps corresponding to the inclusion of the ith face or the linear collapse of a simplex

along an edge.

Given nondegenerate simplices for a simplicial set S●, the full simplicial set (with
degeneracies) can be determined. In the case where S● has the nondegenerate simplices
specified above for S, the k-simplices of S● are given by

Sk = {sk∗, sk−⋯s i , sk−sk−⋯s i , . . . , sk−⋯s i},

where the k degeneracies of the -simplex i are determined by ordered lists of k − 
elements from {, . . . , k − }. Instead labeling ∗ by  and i by , we can write Sk as

k = {, , . . . , k}, where

d i(k) =
⎧⎪⎪⎨⎪⎪⎩

k, k ≤ i ,

k − , k > i ,
and s i(k) =

⎧⎪⎪⎨⎪⎪⎩

k, k ≤ i ,

k + , k > i .

Furthermore, this description clarifies the identification Sn ≅ Z/(n+ ) (as sets). In any
event, the description of geometric realization shows that ∣S●∣ is homeomorphic to S.

Suppose that for a connected space X, we wish to study LX = Map(S , X). Since
S ≅ ∣S●∣, we have

LX =Map(∣S●∣, X) =Map((
∞
∐
k=
∆
k × Sk)/∼, X)

⊂Map(
∞
∐
k=
∆
k × Sk , X) =

∞
∏
k=
Map(∆k × Sk , X)

Since Map(∆k × Sk , X) ≅ Map(∆k , XSk) ≅ Map(∆k , Xk+), these identifications de-
scribe LX as a subspace of

∞
∏
k=
Map(∆k

, Xk+),

cut out by the simplicial relations. We note that XS● is a cosimplicial space, with coface

and codegeneracy maps given by

d∗i (x , . . . , xk) = (x , . . . , x i , x i , . . . , xk)
s∗i (x , . . . , xk) = (x i , . . . , x i− , x i+ , . . . , xk).

In general, for a cosimplicial space C●, the subspace of maps ( fk) ∈∏∞
k=Map(∆k ,Ck)

compatible with the cosimplicial structure maps is called the totalization TotC● of C●,
so we have described LX as TotXS● .

Taking adjoints of the maps LX →Map(∆k , Xk+) yields maps ϕk ∶ ∆k ×LX → Xk+,
which we can describe explicitly as evaluation maps of a loop γ on the coordinates of a

point in ∆k :

ϕk( ≤ t ≤ ⋯ ≤ tk ≤ ; γ) = (γ(t), . . . , γ(tk), γ()).

Consequently, the ϕk give maps

C∗(LX) ηk⊗idÐÐÐ→ Ck(∆k)⊗ C∗(LX) EZÐ→ C∗+k(∆k × LX) C∗(ϕk)ÐÐÐÐ→ C∗+k(Xk+),

where ηk ∶ Z→ Ck(∆k) is the map with ηk() equal to the identity k-simplex ∆k → ∆k .

Dualizing, we obtain maps

(C∗(X))⊗k+ → C∗(Xk+)→ C∗−k(LX).

Since the coface maps in Xk+ are essentially diagonals, the induced maps in coho-
mology produce the cup product, which assemble to give the Hochschild complex

CH∗(C∗(X)) (suitably modified to incorporate the internal differential of the differ-
ential graded algebra C∗(X)). By a result of Jones [], the ϕ∗k give chain maps, so that
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the square

(C∗(X))⊗k+ ϕ∗k //

b

��

C∗−k(LX)

δ

��
(C∗(X))⊗k

ϕ∗k− // C∗−k+(LX)

commutes. If X is -connected, a convergence result of Anderson shows that the

le�-hand side of this chain map computes H∗(TotXS●). Jones further shows that
CH∗(C∗(X))→ C∗(LX) is a chain homotopy equivalence, so that if X is -connected,
then

HH∗(C∗(X)) ≅ H∗(LX).

If X is a manifold, then the cochain C∗(X) of X has Poincaré duality up to homotopy.
Equivalently, they are a Frobenius algebra up to homotopy (in some sense), and the

product in this algebra will yield the Chas-Sullivan loop product.

8 Hochschild Homology and Loop Spaces 2/5/08
8.1 The Adjoint Construction

Recall that, given a simplicial set X●, one has a chain complex C∗ with Cq = Z⊗ Xq for

computingH∗(∣X●∣).�e differential d ∶ Cq → Cq− is given by d = ∑q

i=(−)id i , where

the d i are the face maps from X●. Recall that Z ⊗ X● is a simplicial abelian group, and
that forming this chain complex and computing its homology computes the homotopy

groups of Z⊗ X●.
Given a simplicial space X● (so that each Xq is a space, and the d i and s i are continu-

ous), we instead obtain a double complex to compute H∗(∣X●∣): let Sp(Xq) denote the
p-simplices of Xq ; then the complexes k ⊗ S∗(Xq) assemble to give a chain complex
of chain complexes, which can be changed to a double complex D∗∗ by the reversal of
signs in the appropriate rows or columns.�en H∗(TotD∗∗) ≅ H∗(∣X●∣).
Suppose now that G is a topological group, and note that G acts on itself from the

right by conjugation, with g ⋅ h = h−gh (in which case we denote the G-set G by Gc).

�e homotopy orbits (Gc)hG are denoted

Ad(EG) = Gc ×G EG .

Note that this is a fiber bundle over BG with fiber isomorphic to G, but that it is not a

principal G-bundle. In fact, for any principal G-bundle P → X, we can form Ad(P) ≅
Gc ×G P.

Exercise . Ad(P) is isomorphic toAut(P), whereAut(P)has fiberAutG(Px , Px)over
x ∈ X. ∎

Note also that the sections Γ(Aut(P)) of Aut(P) form the group of bundle automor-
phisms of P over idX .�is group is o�en called the gauge group of P.

�eorem . (folk theorem, perh. due to Moore, Samelson, or Hopf) �ere exists a
fiberwise homotopy equivalence ϕ ∶ Ad(EG)→ LBG. ∎

In order to approach this theorem, we form a simplicial description ofGc ×G EG, and

first of EG. Consider the (topological) category EG with objects G and with a unique
morphism between any two g , g ∈ G. Let EG● = N●(EG), the simplicial space with
EGk the k-tuples of composable morphisms in EG , i.e.,

g
hÐ→ g

hÐ→ ⋯ hkÐ→ gk+ .

�en EGk ≅ Gk+ as topological spaces. Furthermore, ∣EG●∣ ≃ ∗, since EG has an initial
object (in fact, each object of EG is initial). Actually, we take the elements of EGk to be

(g , . . . , gk), where g is the first object in the sequence of morphisms, and where the
other g i are the morphisms.�en the face maps are given by

d i(g , . . . , gk) =
⎧⎪⎪⎨⎪⎪⎩

(g , . . . , g i g i+ , . . . , gk),  ≤ i < k,

(g , . . . , gk−), i = k.

�e degeneracy maps s i are given by the insertion of  between the ith and (i + )th
slots of the k-tuple. Finally, we note that G acts on the le� of EG● by its le� action on
the first coordinate, g. Since G acts freely, it also acts freely on ∣EG●∣, so this space is a
model for EG.

Exercise . Show that ∣EG●∣ is homeomorphic to Milnor’s join construction. ∎

In any event, we can now construct a simplicial space model for Gc ×G EG. Form

another simplicial space Ad(EG)●, with Ad(EG)k ≅ Gc ⊗G (Gk+) ≅ Gk+. �en the
face maps are given by

d i(g , . . . , gk) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(g− gg , . . . , gk), i = ,
(g , . . . , g i g i+ , . . . , gk),  ≤ i < k,

(g , . . . , gk−), i = k.

�e degeneracymaps are again given by insertion of . InMay’s two-sided bar construc-

tion [] notation, Ad(EG) = B(Gc ,G , ∗).

8.2 Cyclic Bar Comstructions

Wenow discuss a related construction, due toWaldhausen in the s, called the cyclic
bar construction. Suppose M is a topological monoid (associative, with unit). Define
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the simplicial space N
cy
● (M) by Ncy

k
(M) ≅ Mk+, with face maps given by

d i(m , . . . ,mk) =
⎧⎪⎪⎨⎪⎪⎩

(m , . . . ,m im i+ , . . . ,mk),  ≤ i < k,

(mkm , . . . ,mk−), i = k.

�e degeneracymaps s j are given by inserting s. Wenote thatZ/(k+) acts onNcy
k
(M),

permuting the d i .

Example . One important example of a topological monoid is the Moore loops ΩX
on a topological space X, defined by

ΩX = {(t ∈ R+
, γ ∶ [, t]→ X) ∣ γ() = γ(t) = x},

where x ∈ X is a basepoint.�e multiplication is given by concatenation of paths (and
addition of lengths). ∎

We observe that whenM = G a group, there is a simplicial homeomorphism between

ϕ● ∶ Ncy● (G)→ Ad(EG)●, given by

ϕk(g , . . . , gk) = (g⋯gk g , g , . . . , gk),
ϕ−k (h , . . . , hk) = (h−k ⋯h− h , h , . . . , hk).

Applying chains C∗(−) to N
cy
● (G) yields a double complex {Cp(Gq+)}p ,q . �e

columns C∗(Gq+) are chain homotopy equivalent to (C∗(G))⊗k+ by the Alexander-
Whitney map, and the resulting double complex has as its homology the Hochschild

homology HH∗(C∗(G),C∗(G)) of the algebra C∗(G).
Corollary . HH∗(C∗(G)) is isomorphic toH∗(Ad(EG)), and hence toH∗(LBG).∎

We note that if G is discrete, then C∗(G) = k[G], so H∗(LBG) ≅ HH∗(k[G]).
Furthermore, in this case, BG is a K(G , ).
�is results have implications in more general settings, too.

�eorem . (Kan, Milnor) Let X be a topological space. �ere exists a group GX ,

homotopy equivalent to the Moore loops ΩX on X, with BGX ≃ X. ∎

Proposition . (Burghelea-Fiedorowicz [], Goodwillie []) For X connected,

HH∗(C∗(GX)) ≅ H∗(LX). ∎

�us far, we have seen two algebraic descriptions of the free loop space LX:

. HH∗(C∗ΩX) ≅ H∗(LX),
. HH∗(C∗X) ≅ H∗LX when X is -connected.

A natural question is to ask whether the algebraic K-theories of C∗X and C∗ΩX are
also related in some way.

8.3 Proof that Ad(EG) ≃ LBG
We now outline the proof that Gc ×G EG ≃ LBG. (�is proof is due to Kate Gruher.)

Proof: We fix a model p ∶ EG → BG, and define

L̃BG = {α ∶ I → EG ∣ p(α()) = p(α())}.

�us, α() and α() lie in the same fiber, and so are related by some element g ∈ G. We
note that pointwise multiplication gives L̃BG a free action by G I , and hence there is a

fibration

G I ↪ L̃BG → L̃BG/G I ≅ LBG .

We also note that the constant paths give an inclusion G ↪ G I . Since I is contractible,

G ≃ G I , and so L̃BG/G ≃ L̃BG/G I ≅ LBG.

We now show that L̃BG/G ≃ Ad(EG). We define a G-equivariant map ψ̃ ∶ L̃BG →
Gc × EG by

ψ̃(α) = (gα , α()),
where gα ∈ G is the unique element of G such that gα α() = α(). Suppose that h ∈ G.
Since ghαhα() = hα() = hgα α(), ghα = hgαh

−.�us,

ψ̃(hα) = (hgαh
−
, hα()) = h ⋅ (g , α()) = h ⋅ ψ̃(α),

so ψ̃ is G-equivariant. Consequently, it descends to a map on G-orbits ψ ∶ L̃BG/G →
Gc ×G EG.

We claim that ψ̃ is a homotopy equivalence. Observe that L̃BG is a pullback of the

diagram

L̃BG //

��

EG I

(ev ,ev)
��

EG ×BG EG // EG × EG ,

where EG ×BG EG is itself a pullback:

EG ×BG EG //

��

EG × EG

p×p
��

BG
∆ // BG × BG

Since both EG I and EG×EG are contractible, the right-hand side of the first diagram is
a homotopy equivalence, and so L̃BG → EG×BG EG is one as well. Furthermore, by the

second diagram, EG ×BG EG ≃ hofib(BG ∆Ð→ BG × BG), which can be computed as the
fiber of BG I

(ev ,ev)ÐÐÐÐ→ BG × BG.�is fiber over (x , x) is ΩBG ≃ G ≃ G × EG. It can



MATH 283 Notes: 1/10/08–3/13/08 18 of 21

then be checked by unwinding the definitions above that the induced map is actually ψ̃,

so this map is a homotopy equivalence. Consequently, the induced map ψ on G-orbits

is a homotopy equivalence as well. ∎

As a result, ∣Ncy● (G)∣ ≃ LBG.�e S-action on LBG is clear from rotation of the free

loop, and we now explain the simplicial S-action on N
cy
● (G).

In general, we study simplicial Sk-actions on a simplicial object X●. To do so, we
construct maps Sk × Xk → Xk for each k that respect the simplicial structure. Suppose

that Sk ≅ Z/(k + ) = ⟨tk+⟩. In order to describe the action by the tk elements, we
introduce the notion of a cyclic object.

Definition . A cyclic object in a category C is a simplicial object in C together with
operators τn ∶ Xn → Xn with relations

. τnd i = d i−τn+,  ≤ i ≤ n, and τnd = dn ;

. τns i = s i−τn−,  ≤ i ≤ n, and τns = snτn−;

. τn+n = . ∎

�eorem . (Dwyer-Hopkins-Kan []) If X● is a cyclic space, then ∣X●∣ has an S-

action. Conversely, if X has an S-action, then S●(X) is a cyclic set. ∎

Since HH∗(C∗G) ≅ H∗(∣Ncy● (G)∣), we therefore expect this Hochschild homology
to have an action byH∗(S), corresponding to the action ofH∗(S) onH∗(LBG).�is
is indeed the case:

�eorem . (Jones []) �e B-operator on CH∗(A,A) induces a degree- operator
B onHH∗(A,A)which coincides with the ∆ operator onH∗(LBG)when A = C∗(G).∎

Another result from Jones is that HC∗(C∗(G)) = HS 

∗ (LBG) = H∗(ES ⊗S  LBG).
In some sense, ES ⊗S  LBG is the space of “closed strings” in BG, since Emb(S ,R∞)
is a model for ES. Finally, by the descrption of the chain complex, it can be shown that

CC∗(C∗(G)) ≅ CH∗(C∗(G))⊗̃H∗(BS),

where the ⊗̃ indicates that there is some twisting in this tensor product (along the same
lines as the twisted tensor products introduced by Brown []).

9 Braid Algebras and Operads 2/7/08
9.1 Braid Algebras

We define an algebraic structure related to BV algebras.

Definition . AGerstenhaber algebra or braid algebra is a pair (B, {−,−}) such that
B is a graded-commutative algebra, {−,−} is a Lie bracket satisfying the Jacobi identity
that is also a derivation in each argument. ∎

Example . A BV algebra (A, ∆) is an example of a braid algebra, with bracket

[a, b] = (−)∣a∣∆(ab) − (−)∣a∣∆(a)b − a∆(b). ∎

�eorem . (Gerstenhaber []) If A is an associative algebra, HH∗(A,A) is a braid
algebra with respect to cup product and the difference of cup- products (both to be

defined). ∎

Recall the “metatheorem” from Section . that if A is a Frobenius algebra, then

HH∗(A,A) is a BV algebra. A recently proved theorem of Costello asserts that
HH∗(A,A) is also a -dimensional TCFT with certain universal properties. We will
prove the following:

�eorem . A genus- -dimensional TCFT is the same as a BV algebra. ∎

By “genus-,” we mean that the cobordism morphisms have genus , and the composi-

tions are restricted to those that would not introduce genus to the composite cobordism.

In order to prove �eorem ., we introduce cup-i products on the Hochschild

cochains CH∗(A,A).�ese notions are due originally to Steenrod.
Suppose that A is a differential graded algebra. Recall that the Hochschild cochain

complex is CH∗(A,A) ≅ ⊕∞
n=Homk(A⊗n ,A). Given c ∈ CH p(A,A) and c ∈

CHq(A,A), define c ∪ c by

(c ∪ c)(a , . . . , ap+q) = c(a , . . . , ap)c(ap+ , . . . , ap+q).

Note that c ∪ c ∈ CH p+q(A,A). Similarly, define the cup- product c ∪ c by

(c ∪ c)(a , . . . , ap+q−)

=
p

∑
i=

(−)(∣c ∣−)(∣a ∣+. . .+∣a i ∣−i)c(a , . . . , a i− , c(a i , . . . , aq+i−), aq+i , . . . , ap+q−).

�en define [c , c] = c∪ c−(−)(∣c ∣−)(∣c ∣−)c∪ c.�is operations formally satisfies
the Jacobi and derivation identities for a braid algebra.

9.2 Operads

We shall show shortly that braid and BV algebras are algebras over specific operads.�e

relevance to TCFTs is as follows: if C∗ is a TCFT, then there are operations

C∗(M(n, ))⊗ (C∗)⊗n → C∗
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coming from the chains on themoduli spaces.�ese “n-to-”multiplications determine

an operad structure. In a TQFT, the mulitplication operations are determined entirely

by the pair of pants and the disk, while in a TCFT there is more data to determine such

operations.

Example . �e associative operad governs groupmultiplication and other associative

multiplication operations, and the A∞-operad governs themultiplication in homotopy-
associative algebras. ∎

We now discuss operads with values in a symmetric monoidal category.

Definition . Let (C ,◻, I) be a symmetric monoidal category (for example, (Top,×),
or Vect,⊗). An S-module A in C is a sequence of objects (A(k)) which are representa-
tions of the symmetric group Sk (so that there are monoid maps Sk → C(Ak ,Ak)). An
operad A in C is an S-module, together with maps

ζk ∈ C (A(k) ◻ A( j) ◻⋯◻ A( jk),A(
k

∑
i=

j i))

and  ∈ C(I,A()) satisfying certain compatibility requirements. For convenience, let
A(k; j , . . . , jk) denote the product

A(k) ◻ A( j) ◻⋯◻ A( jk),

and let such lists of indices be nested (so that A(; (; )) = A() ◻ A() ◻ A().) �en
the diagram

A(l ; (m; n, , . . . , n,m), . . . , (m l ; n l , , . . . , n l ,m l
)) ζ l //

id◻ζm◻⋯◻ζml

��

A(∑i m i ; n, , . . . , n l ,m l
)

ζm

��
A(l ;∑ j n, j , . . . ,∑ j n l , j)

ζ l // A(∑i , j n i , j)

must commute. Furthermore, the unit must satisfy

A(k)→ I ◻ A(k)→ A() ◻ A(k)→ A(k) = idA(k)

for all k, and the composition must be equivariant with respect to the symmetric group

actions on the A(k). ∎

Operads were invented by Boardman and Vogt, and popularized by Peter May [];

they also now appear o�en in the physics literature.

Example . Given a PROP C, the morphisms C(n, ) assemble to give an operad. ∎

Consequently, we have lots of operads from our examples of PROPs:

. �e Segal PROPM gives an operad by restriction tomorphismswith one outgoing

boundary circle;

. �e degenerate Segal PROP, with one morphism for each diffeomorphism type of

cobordism, also gives such a PROP;

. End(V) gives an operad EndV with EndV(k) = Hom(V⊗k ,V).

Definition . Suppose X is an object of C, An algebra X over an operad A is a mor-
phism of operads in C ξ ∶ A→ EndV , i.e., for each k, we have a map A(k)→ C(X◻k , X),
or, by adjunction, A(k) ◻ X◻k → X, respecting the action of Sk . ∎

Suppose now that we consider space-valued operads. On account of the Sk-equivar-

iance, these structure maps for an algebra X yield maps A(k) ×Sk X
k → X. If A(k)

is connected, then there exist paths between two different k-operations, which may be

interpreted as homotopies. Hence, if k = , the action of σ = ( ) on A() × X → X

shows that if A() is connected, the operations of A() are homotopy commutative.
Similarly, if A(k) is a point for all k, then the symmetric group actions are trivial, and

the (unique) k-foldmultiplication is commutative.�is yields the commutative operad.

If instead A(k) ≃ ∗ for all k, the space of operations is contractible, so A gives X a

multiplicative structure where each operation is commutative up to higher homotopies.

9.3 Braid Groups and Configuration Spaces

We seek to determine operads b and bv in graded vector spaces that will govern braid
and BV algebra structures, respectively. In order to do so, we introduce several varia-

tions on the braid group. Let Bk denote the braid group on k strings. One definition of

this group is as follows: let Pk be a given collection of k points in the plane, and let Bk

be the isotopy classes of strings connecting Pk × {} and Pk × {} in R × [, ].
We give a different description of Bk . LetM be a space, k a positive integer, and let

F(M , k) = {(x , . . . , xk) ∈ Mk ∣ x i ≠ x j ,  ≤ i < j ≤ k}

be all k-tuples of distinct points inM. Note that there is a (free) action of Sk on F(M , k),
and let C(M , k) = F(M , k)/Sk , the space of all unordered sets of k distinct points in
M.

We now define Bk = π(C(R , k)). Picking a basepoint x ∈ C(R , k) corresponds
to picking a particular choice of set of k points, and a loop S → C(R , k) based at x
then corresponds to k distinct paths inR, with starting and ending points equal as sets
to x. Similarly, the pure braid group PBk on k strings can be taken to be π(F(R , k)).
�en the fibration Sk ↪ F(R , k)→ C(R , k) yields the short exact sequence of groups

→ PBk → Bk → Sk → .
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Furthermore, F(R , k) and C(R , k) are both K(π, )s. Note that the “forgetful” pro-
jection F(R , k) → F(R , k − ) is a fibration with fiber R ∖ (x , . . . , xk−) ≃ ∨k−S,
which is a K(π, ). Since F(R , ) ≅ R ≃ ∗, an inductive argument using the long exact
sequence in homotopy groups shows that F(R , k) is aK(π, ).�e long exact sequence
of groups for F(R , k)→ C(R , k) then also shows that C(R , k) is a K(π, ).
We further introduce the ribbon braid groups Pk .�ese are wreath products Z ≀Bk =

Zk⋊Bk , where the Bk acts on theZk by the projection Bk → Sk . In effect, the copies ofZ
are tracking integer half-twists around ribbons, which now serve as the strings between

points in R.

Proposition . (F. Cohen-R. Cohen-Mann-Milgram []) Pk = π(GenRatk), where
GenRatk t is the space of generic rational functions of degree k: reduced functions p/q
where p and q are bothmonic and both have degree k, with only simple poles and zeros.∎

�ese groups have some relation to field theories. Recall the following theorem:

�eorem . (Smale) Diff+(D , ∂) ≃ ∗. ∎

We will deduce some consequences of this theorem:

Proposition . Let Mk denote the pair of pants with  incoming circle S and k out-

going circles S , . . . , Sk , each with a marked point x i . Let (m , . . . ,mk) be k distinct
points in D.�en

PBk ≅ π(Diff(D ,m , . . . ,mk , ∂D
)),

and

Bk ≅ π(Diff(D , {m , . . . ,mk}, ∂D))

where the points {x i} are preserved setwise. Furthermore,

Pk ≅ π(Diff(Mk , {S , . . . , Sk}, S)),

where the circles S i are permuted setwise, and the marked points {x i} are also per-
muted. Finally, we will define an additional group

P̃k ≅ π(Diff(Mk , ∂Mk)),

where the entire boundary is fixed. ∎

Each diffeomorphism group above has contractible components, so is homotopy dis-

crete. Hence, K(π, )s for these groups will yield models for the classifying spaces of
these diffeomorphism groups.
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