
�e Wussy Weak Nullstellensatz

�e weak Nullstellensatz says that if F is a subfield of an algebraically closed field K, then any set of polyno-
mials that generate a proper ideal, I, in F[X, . . . , Xn] have a common zero in Kn. Here I will prove this under
the additional assumption that K contains an infinite set of elements that are algebraically independent over
the prime subfield, Q or Z/pZ. (Such a K was classically called a ‘universal domain’.)

Since the complex numbers,C, are uncountable, clearlyC contains an uncountably infinite set of elements
algebraically independent over Q. �erefore, this wussy Nullstellensatz implies the weak Nullstellensatz for
K = C.

A key step of the proof is an extremely simple observation.
TRIVIAL OBSERVATION: If k is a subfield of K and if k[X, . . . , Xn] is the polynomial ring and if P is

an ideal in k[X, . . . , Xn], then a homomorphism h ∶ k[X, . . . , Xn]/P → K that agrees with the inclusion of
k into K on constants, is exactly the same thing as a common zero in Kn of all polynomials in ideal P.

Why? In general a ring homomorphism h ∶ A/P → B is the same thing as a homomorphism h ∶ A → B
with P contained in the kernel. If A is a polynomial ring, a homomorphism h ∶ k[X, . . . , Xn]→ K is uniquely
determined by where the constants in k go and by the images h(X j) = b j in K. We’ve agreed above in our
case that the constants in k are just included in K by an identity map. If you know where the X j go by h,
you know where every polynomial in the X j goes by h, namely h( f (X, . . . , Xn)) = f (b, . . . , bn). In other
words, evaluate f at the vector b = (b j). �is is utterly trivial. If X ,Y , Z go to a, b, c, then where does, say,
f (X ,Y , Z) = XYZ + XY + Z go? You tell me, but you better tell me it goes to abc + ab + c = f (a, b, c),
and, not only that, it is an utter triviality that it goes to f (a, b, c). So, if ideal P is in the kernel of h, then the
vector b is a common zero of every polynomial in P.

How is this trivial observation then used to prove the weak Nullstellensatz under the additional assump-
tion that K has infinite transcendence degree over the prime field? Going back to the notation in the first
paragraph, let k denote the smallest subfield of K containing the coefficients of some finite set of generators
of ideal I. It is true that a necessary step is the “lemma” that K still has infinite transcendence degree over
k, but this is rather easy. (And really trivial, by uncountability, if K = C.) Now choose any prime ideal P in
k[X, . . . , Xn] containing these generators of I. �en k[X, . . . , Xn]/P is an integral domain. Call its field of
fractions L. By the trivial observation above, we will have our desired common zero of the generators of I,
(in fact, a common zero of all polynomials in P) if we can find an embedding of L into K, which extends the
given inclusion of k into K.

Well,  we can assume {X, . . . , Xr} are algebraically independent over k and that L is an algebraic
extension of its subfield k(x, . . . , xr), where x j = X j mod P. �is subfield k(x, . . . , xr) is just a pure tran-
scendental extension of k, rational functions in r variables, so it is easy to embed this subfield into K by just
choosing r elements of K that are algebraically independent over k. But now L is an algebraic extension of
k(x, . . . , xr). Since K is algebraically closed, the embedding of k(x, . . . , xr) into K extends to an embedding
of L into K. Voilà, there is our common zero, k[X, . . . , Xn]/P ⊂ L ⊂ K.

�e proof of the serious weak Hilbert Nullstellensatz, that is, with no assumption about K other than
that it is algebraically closed, is substantially harder than this wussy result where we assume K has infinite
transcendence degree over the prime field. For example, if K is the algebraic closure of k, there is no hope
of embedding the field L above into K if the transcendence degree r is greater than . It requires much more
delicate arguments to find a homomorphism k[X, . . . , Xn]/P → K.




