The Wussy Weak Nullstellensatz

The weak Nullstellensatz says that if F is a subfield of an algebraically closed field K, then any set of polynomials that generate a proper ideal, I, in $F\left[X_{1}, \ldots, X_{n}\right]$ have a common zero in K^{n}. Here I will prove this under the additional assumption that K contains an infinite set of elements that are algebraically independent over the prime subfield, \mathbb{Q} or $\mathbb{Z} / p \mathbb{Z}$. (Such a K was classically called a 'universal domain'.)

Since the complex numbers, \mathbb{C}, are uncountable, clearly \mathbb{C} contains an uncountably infinite set of elements algebraically independent over \mathbb{Q}. Therefore, this wussy Nullstellensatz implies the weak Nullstellensatz for $K=\mathbb{C}$.

A key step of the proof is an extremely simple observation.
TRIVIAL OBSERVATION: If k is a subfield of K and if $k\left[X_{1}, \ldots, X_{n}\right]$ is the polynomial ring and if P is an ideal in $k\left[X_{1}, \ldots, X_{n}\right]$, then a homomorphism $h: k\left[X_{1}, \ldots, X_{n}\right] / P \rightarrow K$ that agrees with the inclusion of k into K on constants, is exactly the same thing as a common zero in K^{n} of all polynomials in ideal P.

Why? In general a ring homomorphism $h: A / P \rightarrow B$ is the same thing as a homomorphism $h: A \rightarrow B$ with P contained in the kernel. If A is a polynomial ring, a homomorphism $h: k\left[X_{1}, \ldots, X_{n}\right] \rightarrow K$ is uniquely determined by where the constants in k go and by the images $h\left(X_{j}\right)=b_{j}$ in K. We've agreed above in our case that the constants in k are just included in K by an identity map. If you know where the X_{j} go by h, you know where every polynomial in the X_{j} goes by h, namely $h\left(f\left(X_{1}, \ldots, X_{n}\right)\right)=f\left(b_{1}, \ldots, b_{n}\right)$. In other words, evaluate f at the vector $\mathbf{b}=\left(b_{j}\right)$. This is utterly trivial. If X, Y, Z go to a, b, c, then where does, say, $f(X, Y, Z)=X^{2} Y Z^{3}+X Y^{2}+Z$ go? You tell me, but you better tell me it goes to $a^{2} b c^{3}+a b^{2}+c=f(a, b, c)$, and, not only that, it is an utter triviality that it goes to $f(a, b, c)$. So, if ideal P is in the kernel of h, then the vector \mathbf{b} is a common zero of every polynomial in P.

How is this trivial observation then used to prove the weak Nullstellensatz under the additional assumption that K has infinite transcendence degree over the prime field? Going back to the notation in the first paragraph, let k denote the smallest subfield of K containing the coefficients of some finite set of generators of ideal I. It is true that a necessary step is the "lemma" that K still has infinite transcendence degree over k, but this is rather easy. (And really trivial, by uncountability, if $K=\mathbb{C}$.) Now choose any prime ideal P in $k\left[X_{1}, \ldots, X_{n}\right]$ containing these generators of I. Then $k\left[X_{1}, \ldots, X_{n}\right] / P$ is an integral domain. Call its field of fractions L. By the trivial observation above, we will have our desired common zero of the generators of I, (in fact, a common zero of all polynomials in P) if we can find an embedding of L into K, which extends the given inclusion of k into K.

Well, wlog we can assume $\left\{X_{1}, \ldots, X_{r}\right\}$ are algebraically independent over k and that L is an algebraic extension of its subfield $k\left(x_{1}, \ldots, x_{r}\right)$, where $x_{j}=X_{j} \bmod P$. This subfield $k\left(x_{1}, \ldots, x_{r}\right)$ is just a pure transcendental extension of k, rational functions in r variables, so it is easy to embed this subfield into K by just choosing r elements of K that are algebraically independent over k. But now L is an algebraic extension of $k\left(x_{1}, \ldots, x_{r}\right)$. Since K is algebraically closed, the embedding of $k\left(x_{1}, \ldots, x_{r}\right)$ into K extends to an embedding of L into K. Voilà, there is our common zero, $k\left[X_{1}, \ldots, X_{n}\right] / P \subset L \subset K$.

The proof of the serious weak Hilbert Nullstellensatz, that is, with no assumption about K other than that it is algebraically closed, is substantially harder than this wussy result where we assume K has infinite transcendence degree over the prime field. For example, if K is the algebraic closure of k, there is no hope of embedding the field L above into K if the transcendence degree r is greater than 0 . It requires much more delicate arguments to find a homomorphism $k\left[X_{1}, \ldots, X_{n}\right] / P \rightarrow K$.

