UFDs Have UFD Polynomial Rings

Theorem $1 R$ a UFD implies $R[X]$ a UFD.
Proof First, suppose $f(X)=a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n}$, for $a_{j} \in R$. Then define the content of $f(X)$ to be cont $(f(X))=\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=d$ in R. (So cont $(f(X))$ is well-defined up to a unit factor in R.)
(Existence) If $p \in R$ is irreducible then p is also irreducible in $R[X]$. If $f(X) \in R[X]$, write $f(X)=d F(X)$, where $d=\operatorname{cont}(f(X))$. Then $\operatorname{cont}(F(X))=1$. We can certainly factor d into a product of irreducibles in R. Either $F(X)$ is irreducible in $R[X]$ or it factors properly as a product of lower degree polynomials (since $\operatorname{cont}(F(X))=1$). All the factors will also have content 1 (since a divisor of any factor would divide F). We can only lower degree of factors finitely often, so we get a factorization of $F(X)$, and hence $f(X)$, as a product of irreducibles in $R[X]$.
(Uniqueness) It suffices to prove each irreducible element of $R[X]$ generates a prime ideal in $R[X]$. If $p \in R$ is irreducible, this is clear, since $R[X] / p R[X]=(R / p)[X]$, which is an integral domain.

Lemma 1 If cont $(F(X))=\operatorname{cont}(G(X))=1, F(X), G(X) \in R[X]$, then $\operatorname{cont}(F(X) G(X))=1$. More generally, for $f(X), g(X) \in R[X], \operatorname{cont}(f(X) g(X))=\operatorname{cont}(f(X)) \operatorname{cont}(g(X))$.

Proof Suppose irreducible $p \in R$ divides all coefficients of $F(X) G(X)$. Then $F(X) G(X)=0$ in $(R / p)[X]$, which is an integral domain. Thus p either divides all coefficients of $F(X)$ or p divides all coefficients of $G(X)$, since one of $F(X), G(X)$ must be o in $(R / p)[X]$. But this contradicts the assumption $\operatorname{cont}(F)=\operatorname{cont}(G)=1$.

In the general case, write $f=d F, g=d^{\prime} G$, where $\operatorname{cont}(F)=\operatorname{cont}(G)=1$. Then $f g=d d^{\prime} F G$, so, by the first part of the Lemma, cont $(f g)=d d^{\prime}=\operatorname{cont}(f) \operatorname{cont}(g)$.

Lemma 2 (Gauss) Let K be the field of fractions of R. If $P(X) \in R[X]$ is irreducible then $P(X)$ is also irreducible in $K[X]$. More generally, if $P(X) \in R[X]$ factors in $K[X]$ then $P(X)$ factors in $R[X]$ with factors of the same degrees as the $K[X]$ factors.

Proof Every element of $K[X]$ can be written $A(X) / a$, where $A(X) \in R[X]$ and $a \in R$. Suppose in $K[X]$ we have $P(X)=(A(X) / a)(B(X) / b)$, with $a, b \in R$ and $A(X), B(X) \in R[X]$. Then $a b P(X)=A(X) B(X) \in$ $R[X]$. Consider an irreducible factor p of $a b$ in R. Then $A(X) B(X)=0$ in $(R / p)[X]$. Thus p either divides all coefficients of $A(X)$ or p divides all coefficients of $B(X)$. We can then cancel a factor p in the $R[X]$ equation $a b P(X)=A(X) B(X)$. By induction on the number of prime factors of $a b$ in R, conclude $P(X)=$ $A^{\prime}(X) B^{\prime}(X) \in R[X]$, where $\operatorname{deg} A^{\prime}=\operatorname{deg} A$ and $\operatorname{deg} B=\operatorname{deg} B^{\prime}$.

Now we finish the proof of the theorem by showing $(P(X)) \subset R[X]$ is a prime ideal if $P(X)$ is irreducible in $R[X]$. Suppose $P(X) Q(X)=F(X) G(X) \in R[X] \subset K[X]$. Since $K[X]$ is a UFD, the Gauss Lemma implies $P(X)$ divides $F(X)$ or $G(X)$ in $K[X]$. Say in $K[X]$ we have $F(X)=P(X)(S(X) / s)$, with $S(X) \in R[X]$, $s \in R$. Then in $R[X]$ we have $P(X) S(X)=s F(X)$. Then s divides $\operatorname{cont}(P(X) S(X))=\operatorname{cont}(S(X))$ by the first Lemma. So $S(X) / s$ is in $R[X]$ and $F(X)$ is in the ideal $(P(X)) \subset R[X]$.

