The Nullstellensatz

I will prove a version of the Nullstellensatz which gives somewhat more "geometric" information than just the statement that a proper ideal, J, in the polynomial ring $k\left[X_{1}, \ldots, X_{n}\right]$ has zeros in K^{n}, where K is any algebraically closed field containing k. This statement is the weak (but not wussy) Nullstellensatz. The strong Nullstellensatz, $I(V(J))=\operatorname{rad} J$, for any algebraically closed field K containing k, follows by the Rabinowitsch trick, given at the end of this note.

Since any proper ideal is contained in a prime ideal $P \subset k\left[X_{1}, \ldots, X_{n}\right]$, it suffices to prove that prime ideals have zeros. A zero of P in K^{n} is the same thing as a homomorphism

$$
\phi: k\left[X_{1}, \ldots, X_{n}\right] / P \rightarrow K,
$$

extending the identity inclusion of k into K. Now, $k\left[x_{1}, \ldots, x_{n}\right]=k\left[X_{1}, \ldots, X_{n}\right] / P$ is an integral domain, hence has a transcendence base over k. Specifically, WLOG, we may assume $\left\{x_{1}, \ldots, x_{r}\right\}$ are algebraically independent over k, and that every element of $k\left[x_{1}, \ldots, x_{n}\right]$ is algebraic over (the field of fractions of) $k\left[x_{1}, \ldots, x_{r}\right]$. The ring $k\left[x_{1}, \ldots, x_{r}\right]$ is isomorphic to a polynomial ring in r variables. We allow $r=0$, which just means that $k\left[x_{1}, \ldots, x_{n}\right]=k\left[X_{1}, \ldots, X_{n}\right] / P$ is an algebraic field extension of k. It is easy to construct homomorphisms $\phi: k\left[x_{1}, \ldots, x_{r}\right] \rightarrow K$. Given arbitrary elements $\gamma_{j} \in K, 1 \leq j \leq r$, there is a homomorphism $\phi: k\left[x_{1}, \ldots, x_{r}\right] \rightarrow K$ with $\phi\left(x_{j}\right)=\gamma_{j}$. I claim that most such ϕ extend to homomorphisms Φ : $k\left[x_{1}, \ldots, x_{n}\right]=k\left[X_{1}, \ldots, X_{n}\right] / P \rightarrow K$, giving us our desired zeros of P. More precisely,
Proposition 1 There is a non-zero polynomial a $\left(x_{1}, \ldots, x_{r}\right) \in k\left[x_{1}, \ldots, x_{r}\right]$ so that if $a\left(\gamma_{1}, \ldots, \gamma_{r}\right) \neq 0 \in K$, then the homomorphism $\phi: k\left[x_{1}, \ldots, x_{r}\right] \rightarrow K$ with $\phi\left(x_{j}\right)=\gamma_{j}$ extends to

$$
\Phi: k\left[x_{1}, \ldots, x_{n}\right]=k\left[X_{1}, \ldots, X_{n}\right] / P \rightarrow K .
$$

Since K is an infinite field, the polynomial $a\left(x_{1}, \ldots, x_{r}\right)$ is non-zero at most points $\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in K^{r}$. The proof will show that each ϕ has finitely many extensions Φ. Each extension Φ is a point $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in$ $V(P) \subset K^{n}$ whose first r coordinates are $\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in K^{r}$. Thus we have a picture of the variety $V(P) \subset K^{n}$ projecting in a finite-to-one manner onto at least the complement of a hypersurface $a\left(x_{1}, \ldots, x_{r}\right)=0$ in K^{r}. (Points in the hypersurface may or may not be in the image of $V(P)$.) The transcendence degree, r, of $k\left[x_{1}, \ldots, x_{n}\right]=k\left[X_{1}, \ldots, X_{n}\right] / P$ over k provides an algebraic interpretation of the geometric dimension of the variety $V(P) \subset K^{n}$, when, say, $K=\mathbb{C}$.
Example 1 Consider $P=\left(X Y^{2}-1\right) \subset k[X, Y]$. Then $\{x\}$ is a transcendence base of $k[x, y]=k[X, Y] /\left(X Y^{2}-\right.$ 1) over k. For every $\gamma \neq 0 \in K$, there are two points (γ, v_{1}) and $\left(\gamma, v_{2}\right) \in V(P) \subset K^{2}$ with first coordinate γ. The plane curve $x y^{2}-1=0$ projects in a two-to-one manner onto the complement of $x=0$ in K^{1}. Draw yourself a picture here (over $k=K=\mathbb{R}$ anyway).

So, how do we prove the proposition? Using the "going up" theorem for integral ring extensions, that's how. Notice if $k\left[x_{1}, \ldots, x_{r}\right] \subset k\left[x_{1}, \ldots, x_{n}\right]=k\left[X_{1}, \ldots, X_{n}\right] / P$ is an integral ring extension, then any ring homomorphism $\phi: k\left[x_{1}, \ldots, x_{r}\right] \rightarrow K$ extends to $\Phi: k\left[x_{1}, \ldots, x_{n}\right]=k\left[X_{1}, \ldots, X_{n}\right] / P \rightarrow K$. Namely, let $Q_{0}=\operatorname{ker} \phi \subset k\left[x_{1}, \ldots, x_{r}\right]$. The going-up theorem states that there is a prime ideal $Q \subset k\left[x_{1}, \ldots, x_{n}\right]=$ $k\left[X_{1}, \ldots, X_{n}\right] / P$ with $Q \cap k\left[x_{1}, \ldots, x_{r}\right]=Q_{0}$. Then $k\left[x_{1}, \ldots, x_{n}\right] / Q$ is an integral, hence algebraic, extension of its subring $k\left[x_{1}, \ldots, x_{r}\right] / Q_{0}$. The same statement holds for the fields of fractions of these two integral domains. Since K is algebraically closed, the embedding $k\left[x_{1}, \ldots, x_{r}\right] / Q_{0} \subset K$ induced by ϕ extends to an embedding $k\left[x_{1}, \ldots, x_{n}\right] / Q \subset K$, which defines $\Phi: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow K$, with $\operatorname{ker} \Phi=Q$.

In the general case, $k\left[x_{1}, \ldots, x_{r}\right] \subset k\left[x_{1}, \ldots, x_{n}\right]$ is only an algebraic extension of integral domains. Each x_{r+j} satifies some polynomial equation over $k\left[x_{1}, \ldots, x_{r}\right]$ with, say, a non-zero leading coefficient $a_{j}\left(x_{1}, \ldots, x_{r}\right) \in$ $k\left[x_{1}, \ldots, x_{r}\right]$. Let

$$
a=a\left(x_{1}, \ldots, x_{r}\right)=\prod_{j} a_{j}\left(x_{1}, \ldots, x_{r}\right) .
$$

Then $k\left[x_{1}, \ldots, x_{r}, 1 / a\right] \subset k\left[x_{1}, \ldots, x_{n}, 1 / a\right]$ is an integral ring extension, since now each x_{r+j} will satisfy a monic polynomial with coefficients in $k\left[x_{1}, \ldots, x_{r}, 1 / a\right]$. The going up argument of the previous paragraph applies to show that every $\phi: k\left[x_{1}, \ldots, x_{r}, 1 / a\right] \rightarrow K$ extends to $\Phi: k\left[x_{1}, \ldots, x_{n}, 1 / a\right] \rightarrow K$. Clearly, given ϕ, there will be at most finitely many choices for each $\Phi\left(x_{r+j}\right)$, since x_{r+j} satisfies a monic polynomial with coefficients in $k\left[x_{1}, \ldots, x_{r}, 1 / a\right]$. The homomorphism $\phi: k\left[x_{1}, \ldots, x_{r}, 1 / a\right] \rightarrow K$ is nothing more than a point $\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in K^{r}$ with $a\left(\gamma_{1}, \ldots, \gamma_{r}\right) \neq 0$, and we've proved each of these extends to finitely many points $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in V(P) \subset K^{n}$. Thus, we have proved exactly the proposition stated above, which includes the weak Nullstellensatz.

Corollary $\mathbf{1}$ The prime ideal $P \subset k\left[X_{1}, \ldots, X_{n}\right]$ is a maximal ideal if and only if $r=0$, that is, if and only if $k\left[X_{1}, \ldots, X_{n}\right] / P$ is an algebraic field extension of k.

The "if" direction is obvious, a maximal algebraically independent subset of the $\left\{x_{i}\right\}$ will be empty. Ob viously in this case $k\left[X_{1}, \ldots, X_{n}\right] / P$ is isomorphic to a subfield of the algebraic closure of k.

Conversely, assuming only that P is a maximal ideal, so that $k\left[X_{1}, \ldots, X_{n}\right] / P$ is some field extension of k, apply the proof of the Nullstellensatz above when the algebraically closed field K is the algebraic closure of k. That proof constructs a ring homomorphism $\Phi: k\left[X_{1}, \ldots, X_{n}\right] / P \rightarrow K$, which must be an embedding, that is, injective, since $k\left[X_{1}, \ldots, X_{n}\right] / P$ is a field. Thus the field $k\left[X_{1}, \ldots, X_{n}\right] / P$ is indeed algebraic over k.

Corollary 2 If $k=K$ is algebraically closed, then any maximal ideal $P \subset K\left[X_{1}, \ldots, X_{n}\right]$ is a point ideal, that is, $P=\left(X_{1}-\gamma_{1}, \ldots, X_{n}-\gamma_{n}\right)$, with $\gamma_{i} \in K$.

Namely, we must have $K\left[X_{1}, \ldots, X_{n}\right] / P \cong K$ in this case, the isomorphism being the identity on the constants K. So, for each X_{j}, some $X_{j}-\gamma_{j} \in P$.

We now prove the strong Nullstellensatz.
Proposition 2 Let $J \subset k\left[X_{1}, \ldots, X_{n}\right]$ be a proper ideal, K the algebraic closure of k (or any algebraically closed field containing k). Let

$$
V(J)=\left\{\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in K^{n} \mid f(\gamma)=0 \text { for all } f \in J\right\}
$$

denote the zeros of J in affine n-space over K. Suppose $g \in k\left[X_{1}, \ldots, X_{n}\right]$ with $g \equiv 0$ on $V(J)$. Then $g^{m} \in J$ for some $m \geq 1$. In other words, $I(V(J))=\operatorname{rad} J \subset k\left[X_{1}, \ldots, X_{n}\right]$.

The proof is called the Rabinowitsch trick. Work in $n+1$ variables over $k, k\left[X_{1}, \ldots, X_{n}, t\right]$, and consider the ideal $(J, 1-\operatorname{tg}) \subset k\left[X_{1}, \ldots, X_{n}, t\right]$. By the assumption about g, this ideal has no zeros in K^{n+1}, since the first n coordinates of such a zero would name a point of $V(J)$, at which g vanishes, so $1-\operatorname{tg}$ would take the value 1 at such a point of K^{n+1}.

It follows from the weak Nullstellensatz in $n+1$ variables that $1 \in(J, 1-\operatorname{tg}) \subset k\left[X_{1}, \ldots, X_{n}, t\right]$. Thus we get a relation in $k\left[X_{1}, \ldots, X_{n}, t\right]$:

$$
1=\sum_{j} h_{j}\left(X_{1}, \ldots, X_{n}, t\right) f_{j}\left(X_{1}, \ldots, X_{n}\right)+h\left(X_{1}, \ldots, X_{n}, t\right)(1-t g) .
$$

with $f_{j} \in J$. Since the X_{i} and t are indeterminates, we can replace t by $1 / g$ in the rational function field $k\left(X_{1}, \ldots, X_{n}\right)$, which gives a formula for 1 with only powers of g in the denominators. Note the last summand in the formula for 1 above disappears. Then, since $f_{j} \in J$, clearing the denominators gives a formula showing some $g^{m} \in J$.

Corollary 3 Let $J=\operatorname{rad} J \subset K\left[X_{1}, \ldots, X_{n}\right]$ be a radical ideal, K algebraically closed. The maximal ideals of the affine coordinate ring $A(V(J))=K\left[X_{1}, \ldots, X_{n}\right] / J$ correspond bijectively with points of the variety $V(J) \subset K^{n} . \square$

A maximal ideal of $K\left[X_{1}, \ldots, X_{n}\right] / J$ is just a maximal ideal of $K\left[X_{1}, \ldots, X_{n}\right]$ that contains J, so this corollary is an immediate consequence of the previous corollary.

One interpretation of this last corollary is that the variety $V(J)$ and its Zariski topology is accessible abstractly as the subspace of maximal ideals in $\operatorname{Spec} A(V(J))$. The affine coordinate ring $A(V(J))$ determines $V(J)$ and its topology internally, you don't need a specific embedding $V(J) \subset K^{n}$ to make sense of the algebraic geometry of $V(J)$. The category of affine K-varieties and polynomial maps between them becomes the same thing as the opposite of the category of commutative rings that have no nilpotent elements and are finitely generated K-algebras. The duality occurs here because a polynomial mapping between affine varieties $W \rightarrow V$ is matched with a homomorphism of rings of K-valued functions which goes in the opposite direction, $A(V) \rightarrow A(W)$. Abstractly, if $P \subset A(V)$ is a maximal ideal and $f \in A(V)$, then the "value" $f(P) \in K$ is just the reduction f (modulo P) in the quotient ring $A(V) / P=K$.

