The Nullstellensatz

I will prove a version of the Nullstellensatz which gives somewhat more “geometric” information than just
the statement that a proper ideal, J, in the polynomial ring k[Xj, ..., X, ] has zeros in K", where K is any
algebraically closed field containing k. This statement is the weak (but not wussy) Nullstellensatz. The strong
Nullstellensatz, I( V(J)) = rad ], for any algebraically closed field K containing k, follows by the Rabinowitsch
trick, given at the end of this note.

Since any proper ideal is contained in a prime ideal P c k[Xj,..., X,], it suffices to prove that prime
ideals have zeros. A zero of P in K" is the same thing as a homomorphism

¢:k[Xy,...,X,]/P ~ K,

extending the identity inclusion of k into K. Now, k[x1,...,%,] = k[Xi,...,X,]/P is an integral domain,
hence has a transcendence base over k. Specifically, wLoG, we may assume {x, . .., x, } are algebraically inde-
pendent over k, and that every element of k[xy, . . ., x,, | is algebraic over (the field of fractions of ) k[ x1, .. ., x,].
The ring k[xj, ..., x,] is isomorphic to a polynomial ring in r variables. We allow r = 0, which just means
that k[x,...,x,] = k[Xy,...,X,]/P is an algebraic field extension of k. It is easy to construct homo-
morphisms ¢ : k[xi,...,x,] - K. Given arbitrary elements y; € K, 1 < j < r, there is a homomor-
phism ¢ : k[xi,...,x,] > K with ¢(xj) = y;. I claim that most such ¢ extend to homomorphisms @ :
k[x1,...,xn] = k[X1,...,X,]/P — K, giving us our desired zeros of P. More precisely,

Proposition 1 There is a non-zero polynomial a(xy,...,x,) € k[x1,...,x,] so that if a(y1,...,y,) # 0 € K,
then the homomorphism ¢ : k[x,...,x.] > K with ¢(x;) = y; extends to

O :k[xy,...,x,] =k[Xy,...,X,]/P > K.

Since K is an infinite field, the polynomial a(x;, ..., x,) is non-zero at most points (y1,...,y,) € K".
The proof will show that each ¢ has finitely many extensions ®. Each extension @ is a point (y1,...,yn) €
V(P) c K" whose first r coordinates are (y1,...,y,) € K". Thus we have a picture of the variety V(P) c K"
projecting in a finite-to-one manner onto at least the complement of a hypersurface a(x;,...,x,) = 0 in
K'. (Points in the hypersurface may or may not be in the image of V(P).) The transcendence degree, r, of
k[x1,...,xn] = k[X3,...,X,]/P over k provides an algebraic interpretation of the geometric dimension of
the variety V(P) c K", when, say, K = C.

Example 1 Consider P = (XY?-1) c k[X, Y]. Then {x} isatranscendence base of k[x, y] = k[ X, Y]/(XY?-
1) over k. For every y # 0 € K, there are two points (y,v;) and (y,v;) € V(P) c K? with first coordinate
y. The plane curve xy* — 1 = 0 projects in a two-to-one manner onto the complement of x = 0 in K!. Draw
yourself a picture here (over k = K = R anyway). O

So, how do we prove the proposition? Using the “going up” theorem for integral ring extensions, that’s
how. Notice if k[xy,...,x,] € k[x1,...,%x,] = k[X1,..., X,]/P is an integral ring extension, then any ring
homomorphism ¢ : k[xy,...,x,] > K extends to ® : k[x,...,x,] = k[X},...,X,]/P — K. Namely, let
Qo = ker¢ c k[xy,...,x,]. The going-up theorem states that there is a prime ideal Q c k[xy,...,x,] =
k[Xy,...,X,]/Pwith Qnk[xy,...,x,] = Qo. Then k[xy,...,x,]/Q is an integral, hence algebraic, extension
of its subring k[xi,...,x,]/Qo. The same statement holds for the fields of fractions of these two integral
domains. Since K is algebraically closed, the embedding k[xi,...,x,]/Qo c K induced by ¢ extends to an
embedding k[x;, ..., x,]/Q c K, which defines @ : k[x;, ..., x,] = K, with ker ® = Q.

In the general case, k[x1,...,x,] € k[x1,...,x,] is only an algebraic extension of integral domains. Each
xr. j satifies some polynomial equation over k[xi, . . ., x,] with, say, a non-zero leading coefficient a;(x1, ..., x,) €
k[x1,...,x,]. Let

a=a(xy,....x)= Haj(xl,...,x,).
j



Then k[xi,...,%,,1/a] c k[x1,...,x,,1/a] is an integral ring extension, since now each x,,; will satisfy a
monic polynomial with coefficients in k[x, ..., x,,1/a]. The going up argument of the previous paragraph
applies to show that every ¢ : k[x;,...,x,,1/a] — K extends to @ : k[xy,...,x,,1/a] — K. Clearly, given
¢, there will be at most finitely many choices for each ®(x,, ;), since x,, ; satisfies a monic polynomial with
coefficients in k[x1,...,%,,1/a]. The homomorphism ¢ : k[xi,...,x,,1/a] — K is nothing more than a
point (y1,...,y,) € K" with a(y;, ..., yr) # 0, and we've proved each of these extends to finitely many points
(y1,--->yn) € V(P) c K". Thus, we have proved exactly the proposition stated above, which includes the
weak Nullstellensatz.

Corollary 1 The prime ideal P c k[Xy, ..., X,] is a maximal ideal if and only if r = 0, that is, if and only if
k[Xy,...,X,]/P is an algebraic field extension of k. 0

The “if” direction is obvious, a maximal algebraically independent subset of the {x; } will be empty. Ob-
viously in this case k[ Xj, . .., X,,]/P is isomorphic to a subfield of the algebraic closure of k.

Conversely, assuming only that P is a maximal ideal, so that k[X), ..., X, ]/P is some field extension of
k, apply the proof of the Nullstellensatz above when the algebraically closed field K is the algebraic closure
of k. That proof constructs a ring homomorphism @ : k[ X, ..., X, ]/P — K, which must be an embedding,
that is, injective, since k[ Xj, ..., X,,|/P is a field. Thus the field k[ X, ..., X,,]/P is indeed algebraic over k.

Corollary 2 If k = K is algebraically closed, then any maximal ideal P c K[Xi, ..., X,] is a point ideal, that
is, P=(X;—y1,..., Xn—yn), with y; € K. -

Namely, we must have K[Xj,...,X,]/P 2 K in this case, the isomorphism being the identity on the
constants K. So, for each X, some X; —y; € P.
We now prove the strong Nullstellensatz.

Proposition 2 Let ] c k[ Xy, ..., X, ] be a proper ideal, K the algebraic closure of k (or any algebraically closed
field containing k). Let

V() ={y=n--»yn) eK" | f(y)=0forall f €]}

denote the zeros of ] in affine n-space over K. Suppose g € k[ X3, ..., X,] with g =0o0n V(]). Then ¢" € ] for
some m > 1. In other words, I(V(J)) =rad ] c k[ Xy, ..., X, ]. O

The proof is called the Rabinowitsch trick. Work in # + 1 variables over k, k[ Xj, ..., X;, t], and consider
the ideal (J,1- tg) c k[ X1, ..., Xy, t]. By the assumption about g, this ideal has no zeros in K"*1, since the
first n coordinates of such a zero would name a point of V(J), at which g vanishes, so 1 - tg would take the
value 1 at such a point of K"*!,

It follows from the weak Nullstellensatz in # + 1 variables that1 € (J,1-tg) c k[ X, ..., Xy, t]. Thus we
get a relation in k[ X, ..., X, t]:

1= hi(Xp,. s X ) fi( Xty oo X)) + h( X1y o5 Xins £) (1 - £9).
j

with f; € J. Since the X; and t are indeterminates, we can replace ¢ by 1/g in the rational function field
k(Xi,...,Xn), which gives a formula for 1 with only powers of g in the denominators. Note the last summand
in the formula for 1 above disappears. Then, since f; € J, clearing the denominators gives a formula showing
some g € ].

Corollary 3 Let J =rad]J c K[Xy, ..., X,,| be a radical ideal, K algebraically closed. The maximal ideals of the
affine coordinatering A(V(J)) = K[ Xy, ..., X, ]/] correspond bijectively with points of the variety V(J) ¢ K".q



A maximal ideal of K[Xj,...,X,]/J is just a maximal ideal of K[Xj, ..., X,] that contains ], so this
corollary is an immediate consequence of the previous corollary.

One interpretation of this last corollary is that the variety V(J) and its Zariski topology is accessible ab-
stractly as the subspace of maximal ideals in Spec A(V (])). The affine coordinate ring A(V(])) determines
V(J) and its topology internally, you don’'t need a specific embedding V(J) c K" to make sense of the al-
gebraic geometry of V(J). The category of affine K-varieties and polynomial maps between them becomes
the same thing as the opposite of the category of commutative rings that have no nilpotent elements and are
finitely generated K-algebras. The duality occurs here because a polynomial mapping between affine varieties
W — V is matched with a homomorphism of rings of K-valued functions which goes in the opposite direc-
tion, A(V) - A(W). Abstractly, if P ¢ A(V') is a maximal ideal and f € A(V), then the “value” f(P) € K is
just the reduction f (modulo P) in the quotient ring A(V)/P = K.



