
�e Nullstellensatz

I will prove a version of the Nullstellensatz which gives somewhat more “geometric” information than just
the statement that a proper ideal, J, in the polynomial ring k[X, . . . , Xn] has zeros in Kn, where K is any
algebraically closed field containing k.�is statement is the weak (but not wussy) Nullstellensatz.�e strong
Nullstellensatz, I(V(J)) = rad J, for any algebraically closed fieldK containing k, follows by the Rabinowitsch
trick, given at the end of this note.
Since any proper ideal is contained in a prime ideal P ⊂ k[X, . . . , Xn], it suffices to prove that prime

ideals have zeros. A zero of P in Kn is the same thing as a homomorphism

ϕ ∶ k[X, . . . , Xn]/P → K ,

extending the identity inclusion of k into K. Now, k[x, . . . , xn] = k[X, . . . , Xn]/P is an integral domain,
hence has a transcendence base over k. Specifically,, wemay assume {x, . . . , xr} are algebraically inde-
pendent over k, and that every element of k[x, . . . , xn] is algebraic over (the field of fractions of) k[x, . . . , xr].
�e ring k[x, . . . , xr] is isomorphic to a polynomial ring in r variables. We allow r = , which just means
that k[x, . . . , xn] = k[X, . . . , Xn]/P is an algebraic field extension of k. It is easy to construct homo-
morphisms ϕ ∶ k[x, . . . , xr] → K. Given arbitrary elements γ j ∈ K,  ≤ j ≤ r, there is a homomor-
phism ϕ ∶ k[x, . . . , xr] → K with ϕ(x j) = γ j. I claim that most such ϕ extend to homomorphisms Φ ∶
k[x, . . . , xn] = k[X, . . . , Xn]/P → K, giving us our desired zeros of P. More precisely,

Proposition  �ere is a non-zero polynomial a(x, . . . , xr) ∈ k[x, . . . , xr] so that if a(γ, . . . , γr) ≠  ∈ K,
then the homomorphism ϕ ∶ k[x, . . . , xr]→ K with ϕ(x j) = γ j extends to

Φ ∶ k[x, . . . , xn] = k[X, . . . , Xn]/P → K .

Since K is an infinite field, the polynomial a(x, . . . , xr) is non-zero at most points (γ, . . . , γr) ∈ Kr .
�e proof will show that each ϕ has finitely many extensions Φ. Each extension Φ is a point (γ, . . . , γn) ∈
V(P) ⊂ Kn whose first r coordinates are (γ, . . . , γr) ∈ Kr .�us we have a picture of the variety V(P) ⊂ Kn

projecting in a finite-to-one manner onto at least the complement of a hypersurface a(x, . . . , xr) =  in
Kr . (Points in the hypersurface may or may not be in the image of V(P).) �e transcendence degree, r, of
k[x, . . . , xn] = k[X, . . . , Xn]/P over k provides an algebraic interpretation of the geometric dimension of
the variety V(P) ⊂ Kn, when, say, K = C.

Example  Consider P = (XY−) ⊂ k[X ,Y].�en {x} is a transcendence base of k[x , y] = k[X ,Y]/(XY−
) over k. For every γ ≠  ∈ K, there are two points (γ, ν) and (γ, ν) ∈ V(P) ⊂ K with first coordinate
γ. �e plane curve xy −  =  projects in a two-to-one manner onto the complement of x =  in K. Draw
yourself a picture here (over k = K = R anyway). ◻

So, how do we prove the proposition? Using the “going up” theorem for integral ring extensions, that’s
how. Notice if k[x, . . . , xr] ⊂ k[x, . . . , xn] = k[X, . . . , Xn]/P is an integral ring extension, then any ring
homomorphism ϕ ∶ k[x, . . . , xr] → K extends to Φ ∶ k[x, . . . , xn] = k[X, . . . , Xn]/P → K. Namely, let
Q = ker ϕ ⊂ k[x, . . . , xr]. �e going-up theorem states that there is a prime ideal Q ⊂ k[x, . . . , xn] =
k[X, . . . , Xn]/P with Q ∩ k[x, . . . , xr] = Q.�en k[x, . . . , xn]/Q is an integral, hence algebraic, extension
of its subring k[x, . . . , xr]/Q. �e same statement holds for the fields of fractions of these two integral
domains. Since K is algebraically closed, the embedding k[x, . . . , xr]/Q ⊂ K induced by ϕ extends to an
embedding k[x, . . . , xn]/Q ⊂ K, which defines Φ ∶ k[x, . . . , xn]→ K, with kerΦ = Q.
In the general case, k[x, . . . , xr] ⊂ k[x, . . . , xn] is only an algebraic extension of integral domains. Each

xr+ j satifies somepolynomial equation over k[x, . . . , xr]with, say, a non-zero leading coefficient a j(x, . . . , xr) ∈
k[x, . . . , xr]. Let

a = a(x, . . . , xr) =∏
j
a j(x, . . . , xr).





�en k[x, . . . , xr , /a] ⊂ k[x, . . . , xn , /a] is an integral ring extension, since now each xr+ j will satisfy a
monic polynomial with coefficients in k[x, . . . , xr , /a]. �e going up argument of the previous paragraph
applies to show that every ϕ ∶ k[x, . . . , xr , /a] → K extends to Φ ∶ k[x, . . . , xn , /a] → K. Clearly, given
ϕ, there will be at most finitely many choices for each Φ(xr+ j), since xr+ j satisfies a monic polynomial with
coefficients in k[x, . . . , xr , /a]. �e homomorphism ϕ ∶ k[x, . . . , xr , /a] → K is nothing more than a
point (γ, . . . , γr) ∈ Kr with a(γ, . . . , γr) ≠ , and we’ve proved each of these extends to finitely many points
(γ, . . . , γn) ∈ V(P) ⊂ Kn. �us, we have proved exactly the proposition stated above, which includes the
weak Nullstellensatz.

Corollary  �e prime ideal P ⊂ k[X, . . . , Xn] is a maximal ideal if and only if r = , that is, if and only if
k[X, . . . , Xn]/P is an algebraic field extension of k. ◻

�e “if ” direction is obvious, a maximal algebraically independent subset of the {xi} will be empty. Ob-
viously in this case k[X, . . . , Xn]/P is isomorphic to a subfield of the algebraic closure of k.
Conversely, assuming only that P is a maximal ideal, so that k[X, . . . , Xn]/P is some field extension of

k, apply the proof of the Nullstellensatz above when the algebraically closed field K is the algebraic closure
of k.�at proof constructs a ring homomorphism Φ ∶ k[X, . . . , Xn]/P → K, which must be an embedding,
that is, injective, since k[X, . . . , Xn]/P is a field.�us the field k[X, . . . , Xn]/P is indeed algebraic over k.

Corollary  If k = K is algebraically closed, then any maximal ideal P ⊂ K[X, . . . , Xn] is a point ideal, that
is, P = (X − γ, . . . , Xn − γn), with γi ∈ K. ◻

Namely, we must have K[X, . . . , Xn]/P ≅ K in this case, the isomorphism being the identity on the
constants K. So, for each X j, some X j − γ j ∈ P.
We now prove the strong Nullstellensatz.

Proposition  Let J ⊂ k[X, . . . , Xn] be a proper ideal, K the algebraic closure of k (or any algebraically closed
field containing k). Let

V(J) = {γ = (γ, . . . , γn) ∈ Kn ∣ f (γ) =  for all f ∈ J}

denote the zeros of J in affine n-space over K. Suppose g ∈ k[X, . . . , Xn] with g ≡  on V(J). �en gm ∈ J for
some m ≥ . In other words, I(V(J)) = rad J ⊂ k[X, . . . , Xn]. ◻

�e proof is called the Rabinowitsch trick. Work in n +  variables over k, k[X, . . . , Xn , t], and consider
the ideal (J ,  − tg) ⊂ k[X, . . . , Xn , t]. By the assumption about g, this ideal has no zeros in Kn+, since the
first n coordinates of such a zero would name a point of V(J), at which g vanishes, so  − tg would take the
value  at such a point of Kn+.
It follows from the weak Nullstellensatz in n +  variables that  ∈ (J ,  − tg) ⊂ k[X, . . . , Xn , t].�us we

get a relation in k[X, . . . , Xn , t]:

 =∑
j
h j(X, . . . , Xn , t) f j(X, . . . , Xn) + h(X, . . . , Xn , t)( − tg).

with f j ∈ J. Since the Xi and t are indeterminates, we can replace t by /g in the rational function field
k(X, . . . , Xn), which gives a formula for  with only powers of g in the denominators. Note the last summand
in the formula for  above disappears.�en, since f j ∈ J, clearing the denominators gives a formula showing
some gm ∈ J.

Corollary  Let J = rad J ⊂ K[X, . . . , Xn] be a radical ideal, K algebraically closed.�e maximal ideals of the
affine coordinate ring A(V(J)) = K[X, . . . , Xn]/J correspond bijectively with points of the variety V(J) ⊂ Kn.◻





A maximal ideal of K[X, . . . , Xn]/J is just a maximal ideal of K[X, . . . , Xn] that contains J, so this
corollary is an immediate consequence of the previous corollary.
One interpretation of this last corollary is that the variety V(J) and its Zariski topology is accessible ab-

stractly as the subspace of maximal ideals in SpecA(V(J)).�e affine coordinate ring A(V(J)) determines
V(J) and its topology internally, you don’t need a specific embedding V(J) ⊂ Kn to make sense of the al-
gebraic geometry of V(J). �e category of affine K-varieties and polynomial maps between them becomes
the same thing as the opposite of the category of commutative rings that have no nilpotent elements and are
finitely generated K-algebras.�e duality occurs here because a polynomial mapping between affine varieties
W → V is matched with a homomorphism of rings of K-valued functions which goes in the opposite direc-
tion, A(V)→ A(W). Abstractly, if P ⊂ A(V) is a maximal ideal and f ∈ A(V), then the “value” f (P) ∈ K is
just the reduction f (modulo P) in the quotient ring A(V)/P = K.




