Some Noetherian Rings

Theorem 1 If A is a commutative Noetherian ring, then so is A[X].

PROOF Let $I \,\subset A[X]$ be an ideal. For each $i \geq 0$, let $I_i \subset A$ denote the ideal generated by the coefficients of X^i of all degree-*i* polynomials in the ideal *I*. Since *I* is closed under multiplication by *X*, we have $I_0 \subset I_1 \subset I_2 \subset \cdots$. Since *A* is Noetherian, this chain stabilizes, that is, for some *r*, $I_{r+i} = I_r$ for all i > 0. For each $i \leq r$, choose a finite set of generators for the ideal I_i , say $I_i = (a_{ij})$, and choose polynomials $f_{ij}(X) \in I$ of degree *i* with leading coefficient a_{ij} .

I claim that $I = (f_{ij}(X)) \subset A[X]$. Namely, suppose $f(X) \in I$ has degree d. If d = 0, f(X) is just an element of A belonging to the ideal (a_{0j}) . These constants are included in our proposed set of generators for I. If $0 < d \le r$ and if a_d is the leading coefficient of f(X), write $a_d = \sum_j c_{dj}a_{dj} \in I_d$. Then $f(X) - \sum_j c_{dj}f_{dj}(X) \in I$. But this polynomial has degree < d, since the degree-d coefficients cancel out. By induction $f(X) \in (f_{ij}(X))$. Finally, suppose d > r. Since $I_d = I_r$, write $a_d = \sum_j c_{rj}a_{rj}$. Then $f(X) - \sum_j c_{rj}X^{d-r}f_{rj}(X) \in I$. Again, this polynomial has degree less than d, so we are finished by induction.

Theorem 2 If A is a commutative Noetherian ring, then so is A[[X]].

PROOF For a power series, define the **degree** to be the *least* power of *X* which occurs in the series. Call the coefficient of that least power of *X* the **leading coefficient**. Again, if $I \subset A[[X]]$ is an ideal, let $I_i \subset A$ denote the ideal generated by leading coefficients of power series of degree *i* which belog to *I*. Multiplication by *X* shows that $I_0 \subset I_1 \subset I_2 \subset \cdots$. Again, for some *r*, $I_{r+i} = I_r$ for all i > 0. For $i \leq r$, choose a finite set of generators $I_i = (a_{ij})$ and choose power series $f_{ij}(X) \in I$ of degree *i* with leading coefficient a_{ij} .

I claim that $I = (f_{ij}(X)) \subset A[[X]]$. Namely, if $f(X) \in I$ has degree d < r, there will be a finite sum $g(X) = f(X) - \sum_{ij} c_{ij} f_{ij}(X) \in I$, $d \le i < r$, which has degree $\ge r$. But now, since $I_{r+i} = I_r$ for all i > 0, it is clear that we can write $g(X) = \sum_j (\sum_{i\ge 0} d_{ij}X^i) f_{rj}(X) \in A[[X]]$. Namely, just choose the coefficients d_{ij} inductively for $i \ge 0$ so as to force the right-hand side to agree with g(X) through degree r + i. The two formulas for g(X) show $f(X) \in (f_{ij}(X)) \subset A[[X]]$.