Some Noetherian Rings

Theorem 1 If A is a commutative Noetherian ring, then so is $A[X]$.
Proof Let $I \subset A[X]$ be an ideal. For each $i \geq 0$, let $I_{i} \subset A$ denote the ideal generated by the coefficients of X^{i} of all degree- i polynomials in the ideal I. Since I is closed under multiplication by X, we have $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$. Since A is Noetherian, this chain stabilizes, that is, for some $r, I_{r+i}=I_{r}$ for all $i>0$. For each $i \leq r$, choose a finite set of generators for the ideal I_{i}, say $I_{i}=\left(a_{i j}\right)$, and choose polynomials $f_{i j}(X) \in I$ of degree i with leading coefficient $a_{i j}$.

I claim that $I=\left(f_{i j}(X)\right) \subset A[X]$. Namely, suppose $f(X) \in I$ has degree d. If $d=0, f(X)$ is just an element of A belonging to the ideal $\left(a_{0 j}\right)$. These constants are included in our proposed set of generators for I. If $0<d \leq r$ and if a_{d} is the leading coefficient of $f(X)$, write $a_{d}=\sum_{j} c_{d j} a_{d j} \in I_{d}$. Then $f(X)-\sum_{j} c_{d j} f_{d j}(X) \in I$. But this polynomial has degree $<d$, since the degree- d coefficients cancel out. By induction $f(X) \in\left(f_{i j}(X)\right)$. Finally, suppose $d>r$. Since $I_{d}=I_{r}$, write $a_{d}=\sum_{j} c_{r j} a_{r j}$. Then $f(X)-\sum_{j} c_{r j} X^{d-r} f_{r j}(X) \in I$. Again, this polynomial has degree less than d, so we are finished by induction.

Theorem 2 If A is a commutative Noetherian ring, then so is $A[[X]]$.
Proof For a power series, define the degree to be the least power of X which occurs in the series. Call the coefficient of that least power of X the leading coefficient. Again, if $I \subset A[[X]]$ is an ideal, let $I_{i} \subset A$ denote the ideal generated by leading coefficients of power series of degree i which belog to I. Multiplication by X shows that $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$. Again, for some $r, I_{r+i}=I_{r}$ for all $i>0$. For $i \leq r$, choose a finite set of generators $I_{i}=\left(a_{i j}\right)$ and choose power series $f_{i j}(X) \in I$ of degree i with leading coefficient $a_{i j}$.

I claim that $I=\left(f_{i j}(X)\right) \subset A[[X]]$. Namely, if $f(X) \in I$ has degree $d<r$, there will be a finite sum $g(X)=f(X)-\sum_{i j} c_{i j} f_{i j}(X) \in I, d \leq i<r$, which has degree $\geq r$. But now, since $I_{r+i}=I_{r}$ for all $i>0$, it is clear that we can write $g(X)=\sum_{j}\left(\sum_{i \geq 0} d_{i j} X^{i}\right) f_{r j}(X) \in A[[X]]$. Namely, just choose the coefficients $d_{i j}$ inductively for $i \geq 0$ so as to force the right-hand side to agree with $g(X)$ through degree $r+i$. The two formulas for $g(X)$ show $f(X) \in\left(f_{i j}(X)\right) \subset A[[X]]$.

