
Integral Ring Extensions

Suppose A ⊂ B is an extension of commutative rings. We say that an element b ∈ B is integral over A if
bn + abn− + ⋯ + an = , for some a j ∈ A. We say that the ring B is integral over A if every element of B is
integral over A.

For any b ∈ B, there is the subring A[b] ⊂ B, the smallest subring of B containing A and b.

Proposition  �e following conditions are equivalent:
(i) b ∈ B is integral over A.
(ii) �e subring A[b] ⊂ B is finitely generated as an A-module.
(iii) A[b] ⊂ C ⊂ B, where C is some subring of B which is finitely generated as an A-module.
(iv) A[b] ⊂ M ⊂ B, where M is some A[b]-submodule of B which is finitely generated as an A-module.
(v) �ere exists an A[b]-module M which is finitely generated as an A-module and faithful as an A[b]-module.

(Faithful means if c ∈ A[b] and cm =  for all m ∈ M, then c = .)

P (i)⇔ (ii): If b is a root of a monic, degree n polynomial over A, then A[b] is spanned as an A-module
by {, b, b, . . . , bn−}. Conversely, if A[b] is spanned as an A-module by finitely many elements, then at most
finitely many powers of b, say {, b, b, . . . , bn−}, appear in formulas for these elements. It follows that these
powers of b span A[b] as an A-module, hence bn is an A-linear combination of lower powers of b.

(ii)⇒ (iii)⇒ (iv): Completely trivial.
(iv)⇒ (v): �e moduleM of (iv) is faithful as an A[b]-module since  ∈ M, where  ∈ A is the multiplica-

tive identity.
(v)⇒ (i): SayM is spanned by {m, . . . ,mn} over A. Each element bmi = ∑n

j= ai jm j, for suitable ai j ∈ A.
Let T = (ai j), an n × n matrix over A. �en (bI − T) is an n × n matrix with entries in B, and the column
vector (m, . . . ,mn)T is in the kernel of (bI − T), regarded as a transformation Mn → Mn. If (bI − T)∗ is
the adjugate matrix of (bI − T), then (bI − T)∗(bI − T) = det(bI − T)I, a scalar diagonal matrix over A[b].
It follows that det(bI − T)mi =  for all i, hence det(bI − T) = , since M is a faithful A[b]-module. But
det(bI − T) =  is a monic, degree n polynomial equation for b over A. ∎

(Remark: If A is Noetherian then another condition equivalent to (i) through (v) above is that A[b] ⊂
M, for some finitely generated A-module M. Because then A[b] is finitely generated as A-module, by the
Noetherian assumption.)

Corollary  If a ring B ⊃ A is finitely generated as an A-module, then every element of B is integral over A. ◻

Corollary  �e set of all elements of B which are integral over A forms a subring of B.

P If b, c ∈ B are integral over A, then the ring A[b, c] is finitely generated as A-module. Specifically, a
spanning set for A[b, c] over Awill exist of the form {bic j},  ≤ i < n,  ≤ j < m. It follows from Corollary 
that all elements of A[b, c], for example b + c and bc, are integral over A. ∎

�e subring Â ⊂ B consisting of all elements of B which are integral over A is called the integral closure
of A in B. We say that A is integrally closed in B if Â = A.

Corollary  If A ⊂ B ⊂ C are three rings with B integral over A and C integral over B, then C is integral over A.

P An element c ∈ C is integral over A[b, . . . , bn], where the b j are coefficients of some monic polyno-
mial over B with root c. Each bi is integral over A, so A[b, . . . , bn , c] is finitely generated as an A-module. A
specific set of A-module generators will have the form of a set of monomials in the elements bi and c, with
bounded exponents. ∎





Corollary  �e integral closure of A in B is integrally closed in B, that is, ˆ̂A = Â ⊂ B.

P Apply Corollary  to A ⊂ Â ⊂ ˆ̂A. ∎

Suppose the ring A is an integral domain, with field of fractions K. We say that A is an integrally closed
domain if A is integrally closed in K.

Proposition  A UFD is integrally closed.

P �is is the same as the familiar result that the only rational roots of monic polynomials with integer
coefficients are themselves integers. Namely if r = p/q is a fraction in lowest terms in K with rn + arn− +
. . . + an =  and a j ∈ A, multiply by qn to see that q divides pn in A. But this contradicts p, q relatively prime
unless q is a unit, that is, r ∈ A. ∎

Next consider an algebraic field extension K ⊂ L, where K is the field of fractions of some integral domain
A. Every element of L is the root of some polynomial with coefficients in A, since one can take the minimal
monic polynomial for x over K and clear denominators.

Proposition  Suppose x ∈ L is the root of a polynomial over Awith leading coefficient a ∈ A. �en x is integral
over A[/a] and ax is integral over A.

P Divide the relation axn + bxn− + ⋯ + c =  by a to see the first statement. Multiply this relation by
an− to see the second statement. ∎

In the situation above, A ⊂ K ⊂ L, denote by B the integral closure of A in L. From the last Proposition, it
follows that L is the field of fractions of B. It also follows that if ∣L ∶ K∣ is finite and if {x, . . . , xn} is a vector
space basis of L over K, then for some a ∈ A the elements {ax, . . . , axn} belong to B and, of course, still form
a vector space basis of L over K.

In general, an element x ∈ L might satisfy some monic polynomial over A and yet its minimum monic
polynomial over K might not have coefficients in A. For example, if A is not integrally closed in its own field
of fractions K and if L = K, this certainly occurs. An example of a domain which is not integrally closed is
Z[

√
]. �e element ( +

√
)/ satisfies the monic equation x − x −  = .

Proposition  Suppose A is an integrally closed domain with field of fractions K. If K ⊂ L is an algebraic
extension and if x ∈ L is integral over A, then, in fact, theminimumpolynomial for x over K has all its coefficients
in A.

P Say g(T) is a monic polynomial over Awhich has x as a root. �en the minimum polynomial, f (T),
for x over K divides g(T) in K[T], hence all the conjugates x j of x in some larger field are integral over A.
But f (T) =∏ j(T −x j) has coefficients which are sums of products of the x j, hence these coefficients are also
integral over A. Since these coefficients belong to K, and A is integrally closed in K, the coefficients of f (T)
all belong to A, as claimed. ∎

We now want to continue studying the situation of an integrally closed integral domain A, with field of
fractions K, and the integral closure B ⊃ A inside some finite algebraic extension L ⊃ K. Very important
special cases are when A = Z and K = Q, in which case B is the ring of algebraic integers in some finite
extension of Q, and when A = k[z] and K = k(z), the field of rational functions in one variable over some
field k, e.g. k = C. In this case, L is a “function field in one variable,” that is, a finitely generated extension of k
of transcendence degree one, and B turns out to be the affine coordinate ring of a nonsingular affine algebraic
curve, in particular, a Riemann surface.





Proposition  If K ⊂ L is a finite separable extension and if A is Noetherian, then B is Noetherian. If A is a
PID, (e.g. A = Z or k[z]), then B is a free module of rank n over A, where n = ∣L ∶ K∣.

P �is takes some steps. We exploit the trace, Tr ∶ L → K. Separability implies Tr ≠ . Of course, in
characteristic , Tr() = n = ∣L ∶ K∣, so separability is kind of behind the scenes in the argument that Tr ≠ .
In both characteristic  and characteristic p, separability is used to make sense of the trace as a K-valued
function which is a sum of field homomorphisms. A�er that, linear independence of characters is needed in
characteristic p to conclude Tr ≠ . �e formula Tr() = n remains correct, but if p ∣ n then n = .

Consider the symmetric K-bilinear pairing, Tr ∶ L × L → K, defined by Tr(x , y) = Tr(xy). For each
y ≠  ∈ L, there exists elements x ∈ L with Tr(x , y) ≠ , since any element of L can be written xy for suitable
x, and Tr ≠  on L. �us, the pairing Tr defines a K-linear injection L → L∗ = HomK(L,K) which assigns to
y ∈ L the K-linear functional ty(x) = Tr(x , y) = Tr(xy) ∈ K. Since L is finite dimensional over K, the trace
form thus defines an isomorphism L ≅ L∗.

Choose a vector space basis {b, . . . , bn} of L over K, with all b j ∈ B. Let {b∗ , . . . , b∗n} ⊂ L denote the
dual basis with respect to the trace form identification L ≅ L∗. Specifically, the {b∗j } are characterized by the
relations Tr(bib∗j ) = δi j.

I claim that B ⊂ ⊕ jAb∗j , the free rank nmodule over A spanned by the {b∗j } inside L. In particular, if A is
Noetherian, then B is Noetherian as an A-module, so it is certainly Noetherian as a ring. (Ideals in B are also
A-submodules of B.) If, further, A is a PID, then it follows that B is a free A-module of rank no greater than
n. �e rank must be exactly n, since B contains vector space bases of L over K, such as the basis b, . . . , bn we
started with, and these n elements are certainly linear independent over A.

How do we prove B ⊂ ⊕ jAb∗j ? �e key is that if b′ ∈ B ⊂ L, then Tr(b′) ∈ A ⊂ K, since Tr(b′) ∈ K is a sum
of conjugates of b′, hence integral over A. But we are assuming A is integrally closed in K. So, now, if b ∈ B,
write b = ∑n

i= cib
∗

i ∈ L, with ci ∈ K. I will show all ci ∈ A. Since b j ∈ B, we have bb j ∈ B, hence, by the key
remark Tr(bb j) ∈ A. But Tr(bb j) = Tr(∑n

i= cib
∗

i b j) = c j, since Tr is K-linear and Tr(b∗i b j) = δi j. ∎

When A = Z and K = Q, there is another important point of view which shows that the integral closure
B ⊃ Z in a finite algebraic extension L ⊃ Q is a free Z-module. If n = ∣L ∶ Q∣, let σ = (σ, σ, . . . , σn) ∶ L → Cn

be the embedding in affine space over the complex numbers defined by the n distinct field embeddings σ j ∶
L → C. So, if x ∈ L, the coordinates of σ(x) are the conjugates of x.

Proposition  In any bounded region in Cn, with respect to the usual norm, there exist only finitely many
vectors x = σ(x), with x ∈ B ⊂ L.

P If all the conjugates x j of x satisfy ∥x j∥ < r, then the coefficients of the minimum polynomial f (T) =
∏ j(T − x j) of x are bounded by some simple function of r. Since these coefficients are ordinary integers,
there are only finitely many polynomials f (T) whose coefficients satisfy these bounds.

One now proceeds to show that σ(B) ⊂ Cn is a discrete lattice, an additive subgroup isomorphic to Zn,
with no accumulation points. Begin by choosing  ≠ b ∈ B with ∥σ(b)∥ as small as possible. On the real
line in Cn containing σ(b), the points of σ(B) consist only of integral multiples of σ(b), an additive copy
of Z. �en choose b ∈ B so that σ(b) is as close as possible to this first line but not on this first line. Argue
that the points in σ(B) which belong to the real plane spanned by σ(b) and σ(b), consist exactly of the
Z-linear combinations of σ(b) and σ(b), and form a discrete lattice isomorphic to Z ⊕ Z. Continue until
the maximal rank, namely n, of subgroups of σ(B) is reached. Details are le� to the reader, or, as Descartes
wrote when he was too lazy to write out detailed proofs of his assertions, “I would not wish to deny the reader
the pleasure of providing the remainder of the proof.” ∎





Proposition  Suppose A is an integrally closed domain, B the integral closure of A in some finite separable
extension of the fraction field of A. Suppose Q ⊂ B is a non-zero prime ideal of B, lying over P ⊂ A. If  ≠ x ∈ Q,
then  ≠ N(x) ∈ P, where N is the field norm. In particular, P is non-zero.

P N(x) is a power of the constant coefficient of theminimalmonic polynomial  = f (x) = xn+axn−+
. . . + an for x over A. In B, x divides this constant coefficient, hence the coefficient belongs to Q ∩ A = P. ∎




