The Going-Up Theorem

Throughout this discussion, we fix an integral ring extension $A \subset B$.
Theorem 1 Suppose $P \subset A$ is a prime ideal. Then there exists a prime ideal $Q \subset B$ with $Q \cap A=P$.
Lemma 1 If $J \subset B$ is an ideal and $J \cap A=I$, then $A / I \subset B / J$ is an integral ring extension.
Proof An element $b \bmod J \in B / J$ satisfies the same monic polynomial over A / I that b satisfies over A.
The theorem and this first lemma combine to give the following result, which is sometimes called the Going Up Theorem. One just applies the theorem to $A / P_{m} \subset B / Q_{m}$.
Theorem 2 (Going-Up) If $A \subset B$ is an integral ring extension and if $P_{0} \subset P_{1} \subset \ldots \subset P_{n}$ is a chain of prime ideals in A, and if $Q_{0} \subset Q_{1} \subset \cdots \subset Q_{m}$ is a chain of prime ideals of B with $Q_{j} \cap A=P_{j}, 0 \leq j \leq m<n$, then the chain in B can be extended to $Q_{m} \subset Q_{m+1}$, with $Q_{m+1} \cap A=P_{m+1}$.

Lemma 2 If $Q \subset B$ is an ideal and $Q \cap A=P$, then Q is maximal in B if and only if P is maximal in A.
Proof If P is maximal then A / P is a field and every element of B / Q is algebraic over A / P. Hence B / Q is a field. Conversely, if Q is maximal and $x \neq 0 \in A / P$, then $1 / x \in B / Q$ satisfies a monic polynomial over A / P, say $(1 / x)^{n}+a_{1}(1 / x)^{n-1}+\cdots+a_{n}=0$. Multiply by x^{n} and solve for $1 / x \in A / P$. Thus, A / P is a field.

Lemma 3 If $S \subset A$ is a multiplicative set, then $S^{-1} A \subset S^{-1} B$ is an integral ring extension.
Proof First of all, $S \subset A \subset B$, so S is a multiplicative subset of B and $S^{-1} B$ is defined. Next, even though $i_{S}: A \rightarrow S^{-1} A$ might not be injective, the natural map $S^{-1} A \rightarrow S^{-1} B$ is injective. Namely, if $[a / s]=0 \in S^{-1} B$, then $a s^{\prime}=0$ for some $s^{\prime} \in S$ and hence $[a / s]=0 \in S^{-1} A$. Finally, a monic degree n polynomial with coefficients in $S^{-1} A$ that has $[b / s] \in S^{-1} B$ as a root is obtained by dividing by s^{n} a monic degree n polynomial with coefficients in A that has b as a root.

Proof (Going-Up) Let $S=A-P$. Choose any maximal ideal $Q_{S} \subset S^{-1} B$. Then, by Lemma 2, $Q_{S} \cap S^{-1} A$ is a maximal ideal in the local ring $S^{-1} A$, hence $Q_{S} \cap S^{-1} A=P^{e}$, the unique maximal ideal of $S^{-1} A$. Now let $Q=Q_{S}^{c}=\left(j_{S}\right)^{-1} Q_{S} \subset B$, where $j_{S}: B \rightarrow S^{-1} B$ is the canonical map. Then $Q \subset B$ is a prime ideal and $Q \cap A=P$, since $P^{e c}=\left(i_{S}\right)^{-1} P^{e}=P \subset A$, where $i_{S}: A \rightarrow S^{-1} A$ is the canonical map.
(To follow the manipulations with the four prime ideals here, it helps to think in terms of the following diagram:

One starts with a maximal ideal $Q_{S} \subset S^{-1} B$. Two contraction steps clockwise around the diagram takes you first to P^{e}, the unique maximal ideal of $S^{-1} A=A_{(P)}$, and then to $P \subset A$. Two contraction steps counterclockwise around the diagram takes you first to some prime ideal $Q \subset B$, which then must contract to $P \subset A$.)

Here is a final result about chains of prime ideals in an integral ring extension $A \subset B$.
Proposition 1 If $Q \subset Q^{\prime} \subset B$ are distinct prime ideals of B, then $P \subset P^{\prime} \subset A$ are distinct prime ideals of A, where $P=Q \cap A$ and $P^{\prime}=Q^{\prime} \cap A$. In particular, if A and B are integral domains and if Q is a non-zero prime ideal of B, then $Q \cap A$ is a non-zero prime ideal of A.
Proof The second statement actually implies the first, by looking at $P^{\prime} / P=\left(Q^{\prime} \cap A\right) / P \subset A / P \subset B / Q$. For the second statement, if $0 \neq x \in Q$, and if $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ is a monic polynomial over A of least degree with $f(x)=0$, then $a_{n} \neq 0$, since B is an integral domain. But obviously $f(x)=0$ implies $a_{n} \in Q \cap A . ■$

