
Outline of Galois�eory Development

. Field extension F ↪ E as vector space over F. ∣E ∶ F∣ equals dimension as vector space. If F ↪ K ↪ E
then ∣E ∶ F∣ = ∣E ∶ K∣∣K ∶ F∣.

. Element a ∈ E is algebraic over F if and only if ∣F(a) ∶ F∣ is finite. Minimum polynomial f (X) ∈ F[X]
for algebraic a ∈ E. f (X) is irreducible, F(a) = F[a] ≅ F[X]/( f (X)), ∣F[a] ∶ F∣ = deg f (X), a basis
is {, a, a, . . . , ad−}, where d = deg f (X). �e set of elements a ∈ E which are algebraic over F is a
subfield of E.

. Existence of Splitting Fields for a polynomial or family of polynomials F ⊂ F[X]. Existence of Alge-
braic Closure. Characterizations of Algebraic Closure: A field E is algebraically closed if every non-
constant polynomial in E[X] factors as a product of linear polynomials. (Equivalently, every non-
constant polynomial in E[X] has a root in E.) A field E is an algebraic closure of a subfield F if E is
algebraic over F and every non-constant polynomial in F[X] factors as a product of linear polynomials
in E[X].

. Uniqueness of Splitting Fields.
MAIN LEMMA: h ∶ F → L′ extends to h′ ∶ F[a]→ L′ if and only if h f (X) has roots in L′, where f (X)
is theminimumpolynomial for a over F and h f (X) is the image of f (X) under themap F[X]→ L′[X]
induced by h. �e number of distinct extensions of h, h′ ∶ F[a] → L′, equals the number of distinct
roots of h f (X) in L′, and h′ is determined by the value h′(a) = a′, where a′ is a root of h f (X) in L′.
CONSEQUENCE: If F ↪ L is a splitting field of F ⊂ F[X], h ∶ F → F′ a field homomorphism, and
F′ ↪ L′ an extension which contains a splitting field of hF ⊂ F′[X], then h extends to h′ ∶ L → L′. In
particular, any two splitting fields of F are isomorphic over F.

. COROLLARY OF MAIN LEMMA: If ∣E ∶ F∣ is finite, the number of distinct extensions h′ ∶ E → L of
h ∶ F → L is always less than or equal to ∣E ∶ F∣.

. Normal (Algebraic) Extensions F ↪ E. �ree characterizations:

(i) E is a splitting field of a family of polynomials over F.
(ii) If h ∶ E → F̂ is any embedding into the algebraic closure of F with h = id on F, then h(E) = E.

(WLOG, F ⊂ E ⊂ F̂.)
(iii) If an irreducible polynomial g(X) ∈ F[X] has a root in E then g(X) factors into a product of

linear factors in E[X]. �at is, all roots of g(X) in F̂ are in E.

. �e derivative f ′(X) and algebraic properties. Especially gcd( f , f ′) =  if and only if f (X) has no
multiple roots. Consequently, if char(F) =  or if F is a finite field then every irreducible polynomial
of degree d in F[X] has d distinct roots in the algebraic closure F̂.

. Separable (Algebraic) Extensions F ↪ E. �ree characterizations:

(i) Every element a ∈ E is the root of a polynomial with no multiple roots. �at is, every element of
E is ‘separable’ over F.

(ii) E is generated over F by separable elements.
(iii) If E′ ⊂ E and ∣E′ ∶ F∣ is finite, then ∣E′ ∶ F∣ equals the number of distinct embeddings h′ ∶ E′ → F̂

with h′ = id on F. (So if ∣E ∶ F∣ is finite, then ∣E ∶ F∣ equals the number of distinct embeddings
E → F̂ over F).

NOTE: It follows from these considerations, especially (.iii), that given F ↪ K ↪ E, K/F and E/K
both separable implies E/F separable. Also, the set of elements in any E which are separable over F
forms a subfield of E.





. �eorem of the Primitive Element for finite separable extensions E/F. Namely, E = F[a], for some
a ∈ E. �ere are many proofs. E.g., start with F[u, v], then look at elements a = u + cv with c ∈ F. If
f (X) and g(X) are the minimal polynomials for u and v over F, choose c so that f (a − cX) and g(X)
have exactly one common root, namely v. �en gcd( f (a− cX), g(X)) ∈ F[a][X]must be X−v, hence
v is in F[a], so also u is in F[a], and F[u, v] = F[a]. (�is proof works for infinite F. If F is finite so is
E, and E∗ is a cyclic multiplicative group, so E = F[a] is clear.)

. Define E/F to be a Galois extension if and only if E is separable AND normal over F. (�is is the ’right’
definition, because the conditions separable and normal are easily understood in terms of individual
generators of E over F and the roots of their minimal polynomials.)

. COROLLARY: A finite extension E/F is Galois if and only if ∣E ∶ F∣ equals the number of automor-
phisms g ∶ E → E with g = id on F. (�e proof just combines characterization (.ii) of Normal with
characterization (.iii) of Separable.)

. Define the Galois Group Gal(E/F) to be the group of automorphisms g ∶ E → E which fix all elements
of F. For finite Galois extensions, ∣Gal(E/F)∣ = ∣E ∶ F∣, by item .

. If f (X) is a separable, irreducible polynomial of degree n, then the Galois group of its splitting field is
a transitive subgroup of the symmetric group Sn of all permutations of the roots of f (X). �e order of
the group is divisible by n.

. Define the Fundamental Correspondences

{H ≤ G}↔ {intermediate fields L of E/F},

where G = Gal(E/F). H ↦ EH , the subfield of E fixed by all elements of H. L ↦ Gal(E/L), the
subgroup of G fixing all elements of L.

. State and prove the Fundamental�eorem for Finite Galois Extensions.

�e direction L ↦ Gal(E/L) = H ↦ EH = L is ‘easy’, and just uses the definitions and the fact from 
that ∣Gal(E/L)∣ = ∣E ∶ L∣. �e direction H ↦ EH = L ↦ Gal(E/L) = H requires more. �e sticking
point is why is ∣E ∶ EH ∣ ≤ ∣H∣? But if E = L[a] then the product∏(X−ha), h ∈ H, is a polynomial with
coefficients in EH = L which has a as a root and has degree ∣H∣. So ∣L[a] ∶ L∣ ≤ ∣H∣. By the �eorem
of the Primitive Element, the assumption E = L[a] is justified here. If g ∶ E → E is an automorphism
over F and L ⊂ E is an intermediate field, corresponding to subgroup H ⊂ G, then it is a trivial ‘group
action’ fact that the subgroup of G corresponding to the field gL ⊂ E is the conjugate subgroup gHg−

of H. So H is normal in G if and only if L is normal over F. In this case, Gal(L/F) = G/H follows
easily, since there is a map G → Gal(L/F), which is onto and has kernel H.

. Two miscellaneous results:

(i) An algebraic extension F ↪ E is primitive, that is, E = F[a], if and only if there are only finitely
many intermediate fields L, with F ⊂ L ⊂ E.

(ii) If H is a finite group of automorphisms of a field E and EH is the fixed field, then the extension
E/EH is finite, normal, separable, and ∣E ∶ EH ∣ = ∣H∣.

(Result (.ii) is closely related to the trickier part of the Fundamental�eorem in . In that situation
though, one knew E/EH was finite, normal, separable, because one startedwith a finiteGalois extension
E/F. But, here, all this must be proved.)

. Two results about composite extensions:





(i) If K/F is a finite Galois extension and L/F is any extension, then KL is Galois over L with
Gal(KL/L) = Gal(K/K ∩ L) ⊂ Gal(K/F).

(ii) If K/F and L/F are two finite Galois extensions then KL/F is Galois and

Gal(KL/F) ⊂ Gal(K/F) ×Gal(L/F),

specifically, the subgroup {(u, v) ∣ u ∶ K → K and v ∶ L → L with u = v on K ∩ L}.
(In part (.i), interpret KL and K∩L as subfields of L̂, the algebraic closure of L. Specifically, L̂ contains
a unique isomorphic copy of K, since K is the splitting field of some polynomial in F[X]. In part (.ii),
interpret both K and L as subfields of F̂.)

. Artin’s proof that C = R[i] is algebraically closed. First, every element of C has square roots, so C has
no quadratic extensions. Suppose E/C is some finite algebraic extension, whichWLOGcan be assumed
normal overR. If ∣E ∶ R∣ is divisble by an odd prime, the fixed field of a Sylow -subgroup of Gal(E/R)
would have odd degree over R. Any element of this field would have minimal polynomial over R of
odd degree. But every odd degree polynomial over R has a root in R, hence can’t be irreducible. �us,
∣E ∶ C∣ = n, for some n. But then if n > , Gal(E/C) would contain a normal subgroup of index ,
corresponding to a proper quadratic extension of C.

. EXAMPLE: Roots of Unity.

�e roots of Xn −  =  that lie in a field extension E of F form a multiplicative subgroup of E, hence
form a cyclic group. If char(F) = p does not divide n, there are n roots in the splitting field. �us, the
Galois group is a subgroup of Aut(Z/nZ), hence is abelian of order dividing ϕ(n) = ∣(Z/nZ)∗∣. �e
splitting field is generated over F by any primitive nth root of , say z, and a Galois automorphism is
determined by the image of z, which is some power z j with (n, j) = . �e automorphism must fix F,
so perhaps only a proper subgroup of such j in (Z/nZ)∗ give Galois group elements. In Z[X], there
is a factorization Xn −  = ∏d Fd(X), where d runs over all divisors of n, and the Fd(X) are defined
inductively. �e roots of Fn(X) are precisely the primitive nth roots of , so deg Fn(X) = ϕ(n). It is
proved that all Fn(X) are irreducible in Q[X], hence the splitting field of Xn −  over Q has degree
ϕ(n) and Galois group Aut(Z/nZ) = (Z/nZ)∗. (If n = mpi , with (m, p) = , p = char(F), then
Xn −  = (Xm − )q, q = pi , so the splitting fields of Xn −  and Xm −  coincide.)

. EXAMPLE: nth roots.

Assume the nth roots of  are in F, say z, z, . . . , zn = . We also assume char(F) =  or (n, p) = ,
where p = char(F). If a ∈ F, the polynomial Xn − a has roots b, zb, . . . , z(n−)b, hence the splitting
field is generated over F by one nth root b of a. A Galois automorphism is determined by the image of
b, which is some z jb. �us the Galois group is a subgroup of Z/nZ, hence is cyclic.

. EXAMPLE: X p − X + a, where char(F) = p, and a ∈ F.
If b is one root then all the roots are given by b, b + , b + ,⋯, b + (p − ). A Galois automorphism
is determined by the image of b, which is some b + j. Since p is prime, either all roots are in F or the
Galois group is cyclic of order p.

. EXAMPLE: Finite fields.

For each prime p and positive integer n, there is exactly one field Fq with q = pn elements, namely, the
splitting field of Xq − X over Fp. �e Galois group over the prime field Fp = Z/pZ is cyclic of order n,
generated by the Frobenius automorphism x ↦ x p. F(pd) ⊂ F(pn) if and only if d divides n. Also, any
extension E/F where both F and E are finite fields is Galois, that is, normal and separable, with cyclic





Galois group generated by some power of the Frobenius automorphism. Adjoining a single root of any
irreducible polynomial of degree n over Z/pZ gives the field Fq, where q = pn. Since the cyclic Galois
group acts transitively on the n roots, it must act as an n-cycle on these roots. A product of distinct
irreducible polynomials of degree n, n, . . . , nr will also have a cyclic Galois group, which is generated
by a product of disjoint n j cycles. �e degree of the splitting field will be lcm(n, n, . . . , nr). Since
F∗ is a finite cyclic group for any finite field F, the splitting field of Xm − , (m, p) = , is the field Fq,
q = pn, where n is least so that m divides pn − . �e polynomial Xq − X, q = pn, is the product of all
monic irreducible polynomials of degrees d which divide n.

. EXAMPLE: Iterated radical extensions. Suppose

F = F ↪ F ↪ ⋯↪ Fm = E

is a sequence of extensions such that E is normal over F and each extension Fi ↪ Fi+ is one of three
types:

(i) splitting field of Xn −  with char =  or char = p and (n, p) = ,
(ii) splitting field of Xn − a, where a ∈ Fi and the nth roots of  are in Fi , with char =  or char = p

and (n, p) = ,
(iii) splitting field of X p − X + a, where a ∈ Fi and char = p.

�en Gal(E/F) is a solvable group.
�is is rather easy from �e Fundamental �eorem, Examples , ,  above, and the definition of
(finite) solvable group. But this implies the amazing result that certain polynomials f (X) ∈ F[X], e.g.
quintics with group S, cannot have a root in any field K obtained from F by a sequence of extensions
of the above types, hence there cannot be formulas for the roots as iterated radicals. (Namely, if K is
obtained from F by a sequence of extensions of the above types, then the normal closure E of K can also
be so obtained, because at each stage the normal closure over F can be obtained by further extensions
of exactly the same type. For example if nth roots of a are adjoined at some point to a field which is
assumed inductively to be normal over F, then also adjoin successively the nth roots of all conjugates
of a to give the next normal closure. �e Galois group of f (X) would then be a quotient group of
Gal(E/F), hence solvable.)

. EXAMPLE: �ere is a converse to Example . Suppose a separable polynomial f (X) in F[X] has a
solvable Galois group, G. �en the roots of f (X) are in a field E obtained from F by a sequence of
extensions as in Example . Namely, if E is the splitting field of f (X) over F and F′ is the extension
obtained by adjoining all ∣G∣-th roots of unity to F, let E′ = EF′ be the composite. �en E′/F′ is Galois
and has solvable group, say G′ ⊂ G. �ere is a composition series for G′ with each successive quotient
group cyclic of prime order, say pi , where pi divides ∣G∣. Hence, either pi = p = char(F), or the pi-th
roots of  are in F′. �e Fundamental �eorem produces a corresponding sequence of cyclic Galois
extensions. �e desired converse to Example  then follows by dealing with the cyclic cases, as in the
next three paragraphs.

. LINEAR INDEPENDENCE OF CHARACTERS: If G is a group and h, . . . , hn ∶ G → E∗ are distinct
homomorphisms from G to the multiplicative group of a field E, then {h, . . . , hn} are linearly inde-
pendent as functions G → E. �e proof uses a little sleight of hand to reduce the length of any linear
dependence relation. Note if G = E∗, then automorphisms E → E can be interpreted as characters of
E∗.

. EXAMPLE: E/F Galois, with cyclic group of order n, where the nth roots of  are in F and where char =
 or char = p with (n, p) = . �en E = F[ n

√
a], for some a ∈ F. (Let Gal(E/F) = {, s, s, . . . , sn−}





and let z ∈ F be a primitive nth root of . Use linear independence of the characters {s j} of E∗ to find
b ∈ E so that the element given by

r = b + zs(b) + zs(b) +⋯ + zn−sn−(b)

is not . �en zs(r) = r, so r has n distinct conjugates in E and s(rn) = rn. It follows that rn = a ∈ F
and E = F[r].)

. EXAMPLE: E/F Galois, with cyclic group of order p = char(F). Again let Gal(E/F) = {, s, . . . , sp−}
and choose t ∈ E with t + s(t) + ... + sp−(t) = Tr(t) ≠ , which can be done since the characters are
linearly independent. Note Tr(t) ∈ F since s(Tr(t)) = Tr(t). Now set

r = − 
Tr(t)(s(t) + s(t) +⋯ + (p − )sp−(t)).

�en s(r) − r = , so r has p distinct conjugates in E and s(rp − r) = (r + )p − (r + ) = rp − r, so this
element is in F. �us, r is a root of X p − X + a, for some a ∈ F, and E = F[r].

. Norms and Traces. Let E/F be a finite separable extension, s, . . . , sn the distinct embeddings E → F̂,
the algebraic closure of F, with si = id on F. So n = ∣E ∶ F∣. For r ∈ E, define the norm NE/F(r) =
∏i si(r), and define the trace TrE/F(r) = ∑i si(r). Here are some properties of norms and traces:

• If Xd − aXd− + ⋯ + (−)dad is the minimal polynomial for r over F then N(r) = an/dd and
Tr(r) = (n/d)a. In particular, N(r) and Tr(r) are functions E → F.

• N(rs) = N(r)N(s), Tr(r + s) = Tr(r) + Tr(s), and Tr(cr) = c Tr(r) for c ∈ F.
• Both trace and norm are transitive for a double extension F ↪ E ↪ K, that is, NK/F(r) =
NE/F(NK/E(r)), and similarly for the trace.

• �e F-linear map E → E given by multiplication by r has trace Tr(r) and det N(r).

. Hilbert �eorem . If E/F is a cyclic Galois extension with Galois group generated by s ∶ E → E,
and if x ∈ E has norm N(x) = , then x = b/s(b) for some b ∈ E. If y ∈ E has trace Tr(y) = , then
y = c − s(c), for some c ∈ E.
(Examples are provided by x = ζn ∈ F, where n = ∣E ∶ F∣ and by y =  ∈ F, where ∣E ∶ F∣ = p = char(F).
In these cases, a proof is given in Examples  and  above. �e general proof follows along similar
lines, using linear independence of the Galois automorphisms to write down appropriate elements b
and c in E).

. Symmetric Functions and �e General Equation of Degree n. Suppose x, . . . , xn are indeterminates,
F(x, . . . , xn) the field of rational functions in n variables. �e symmetric group Sn acts by permuting
the xi . �e fixed field is F(σ, ..., σn), where σ j is the jth elementary symmetric function of the xi . �is
is seen from Artin’s result .ii, along with the identity

Xn − σXn− +⋯ + (−)nσn = (X − x)⋯(X − xn).

It can be shown directly that {σ, . . . , σn} are algebraically independent over F, but this is a special
case of a general fact about “transcendence degree and transcendence bases” of (non-algebraic) field
extensions. A slightly different perspective on the above setup is to start with algebraically independent
a, . . . , an over F, then look at the splitting field of the separable polynomial Xn−aXn−+ ...+(−)nan.
If the roots are called x, . . . , xn, then the splitting field is F(x, . . . , xn) and the Galois group is Sn. In
any case, one can see by this Galois theory viewpoint that any symmetric rational function of the xi
is a rational function of σ, . . . , σn. A symmetric rational function must have symmetric numerator





and denominator when written in lowest terms, and thus symmetric polynomials with coefficients in
F are polynomials in σ, . . . , σn. (It is easy enough to prove this result for symmetric polynomials with
coefficients in any commutative ring by an induction on degree.)

A consequence of Galois theory and non-solvability of Sn is that there can be no iterated radical formu-
las for the roots of polynomials of degree greater than , where the radicals are expressed universally
in terms of the coefficients of the polynomial. In the cases n =  and , the composition series for S
and S lead systematically to universal iterated radical formulas for the roots of the general equation,
at least if the characteristic is not  or .

. �e Discriminant. �e expression d =∏i< j(xi − x j) is invariant under the alternating group An ⊂ Sn.
D = d is invariant under Sn, hence is a polynomial in the symmetric functions sn. When the xi
are roots of a separable polynomial, D is called the discriminant of the polynomial, and is given by a
universal formula in terms of the coefficients of the polynomial. If the ground field F has characteristic
different from , the Galois group is a subgroup of An if and only if D is a square in F. For the quadratic
X + aX + b, D = a −b. For the cubic X + pX + q, D = −p −q. If char(F) ≠ , any cubic can be
put in this form without changing D, by replacing X with (X − a/), where a is the coefficient of X.
�ere are many interesting formulas for or involving discriminants.

. Determination of Galois Groups. �ere are algorithms for determining the Galois group of any poly-
nomial in Q[X], but these algorithms are not feasible to carry out by hand, even in degrees as low as
. For irreducible cubics, there are only two possibilities, distinguished by the discriminant. For irre-
ducible quartics, there are five possible Galois groups. For irreducible quintics, there are also only five
possible Galois groups, because S only has five isomorphism types of transitive subgroups. But deter-
mining which group is correct can be difficult without some luck. An irreducible quintic with three
real roots always has group S, because complex conjugation provides a -cycle in the Galois group,
and, of course, there is a -cycle in the Galois group. �ere is an extremely useful result concerning
reduction modulo p that in many cases is adequate for determining a Galois group. Suppose monic
f (X) has integer coefficients and suppose the mod p reduction of f (X) has no repeated factors. �en
the Galois group of f (X) over Q contains a permutation of the same cycle form as a generator of the
(cyclic) Galois group over Z/pZ, described in Example  above. �us, factoring f (X) mod p for var-
ious primes may provide enough cycle types in the Galois group to determine the group. �e mod p
reduction result is proved using the theory of prime ideals in rings of algebraic integers.

. Inseparability. Suppose E/F is an arbitrary algebraic field extension. �e set of all elements a in E
separable over F forms a field, Es. �is is a consequence of characterization (.iii) of separability. Every
element b in E not in Es is purely inseparable over Es. �is means bq is in Es for some q = pn, p =
char(F).�eminimal polynomial for b over F has form g(Xq), where g(X) is an irreducible separable
polynomial over F. Since Xq−bq = (X−b)q, it is clear that any embedding of E into an algebraic closure
Ê of E which fixes Es must be the Identity. �us, if E is normal over F, Gal(E/F) = Gal(Es/F). Also
inside E is the field Ei consisting of elements which are purely inseparable over F. Always F is the
intersection of Es and Ei . In general, the extension E/Ei is not separable, so there is an ‘asymmetry’ in
the two factorizations F ↪ Es ↪ E and F ↪ Ei ↪ E. In fact, Ei = F is possible even when Es is a proper
subfield of E. However, if E is normal over F then E is the composite EiEs and E is separable over Ei . In
this case, Ei is the fixed field of the Galois group Gal(E/F), and Gal(E/Ei) = Gal(E/F) = Gal(Es/F).




