
Free Groups, Presentations, and Related Topics

Categorical Direct Sums

Suppose X j, for j ∈ J, is some collection of objects in some mathematical category. By a direct sum of the X j
is meant an object S in the category together with morphisms s j ∶ X j → S such that for every object Y in the
category and every collection of morphisms f j ∶ X j → Y , there exists a uniquemorphism f ∶ S → Y such that
f ○ s j = f j ∶ X j → Y .

For example, maybe the category being studied is abelian groups, or le� R-modules where R is a ring,
or topological spaces, or commutative rings, or (arbitrary) groups. In all these cases, direct sums exist. You
know what they are in the first two cases. It is pretty easy to figure out what “categorical direct sums” are in
the category of topological spaces and continuous maps. In the last two examples, commutative rings and
arbitrary groups, the categorical direct sums are more subtle to construct. We will give the construction for
groups. �ese categorical direct sums are known as “free products” of groups. First, do this easy “uniqueness”
exercise about direct sums in any category.

Exercise  In any category, two direct sums, (S , s j) and (S′, s′j), of the same collection of objects {X j} are
“isomorphic” in the category.

Free Products of Groups

Next, before we construct the correct “direct sum” in the category of groups, make sure you understand why a
direct product, say Z×Z to be quite specific, is definitely not the categorical “direct sum.” �e two generators
of Z ×Z commute. But obviously you could consider two homomorphisms from Z to some group G so that
the two images ofZ do not commute inG. �en you can’t find a suitableZ×Z→ G fulfilling the “direct sum”
requirement.

Let’s call the correct direct sum we are looking for in the category of groups by the symbol Z ∗ Z. If the
first Z is generated by x and the second Z is generated by y, then Z ∗ Z must contain all sorts of products,
like xyxy−x−, with no commuting simplifications. So, this will be the actual construction. Z ∗ Z will
be constructed as a certain set of words in the alphabet {x , y, x−, y−}, along with a product which just
juxtaposes words, with certain obvious cancellations when xs or ys are next to their inverses.

It turns out that it is not really harder to construct ∗ jG j, the “direct sum” of an arbitrary family of groups
in the category of all groups. �e construction is called the free product of the G j. �e elements of ∗ jG j =W ,
will be reduced words, sequences w = gi()gi() . . . gi(n), where gi( j) ∈ Gi( j), with adjacent indices distinct
and all group elements different from the identity. We allow the empty word, ∅, which will be the identity
element of ∗ jG j.�ere is a well-defined product on this set,W , of reduced words. Start by simply juxtaposing
the words, ww. If all adjacent indices are distinct, that is the product. Otherwise, the last index of the first
word must agree with the first index of the second word, ww = (⋯g j)(h j⋯ ) with g j and h j both in G j.
Reduce the word by replacing these two letters by the single element g jh j ∈ G j. If that product is not the
identity element of G j, you are finished. If that product is the identity in G j, remove it. Iterate this procedure
with the resulting simplified word until a reduced word is obtained. �e only possible simplifications and
cancellations occur where remnants of the two original words meet, no choices are ever made about where
to simplify, so the product is well-defined. Write the reduced product of two words as [w][w].

�e only difficulty in showing that this set of reducedwords,W , with the product just defined, is a group, is
the proof of the associative law. Identity element,∅, and inverses, are obvious. �e problemwith associativity
is that when three words are juxtaposed, you must perform simplifications in two different orders, so it isn’t
immediate that you always end up with the same reduced word. �is is a technical difficulty, which must be
handled one way or another. I’ll follow a clever approach which embeds W in a product-preserving way in
the group SW of all permutations of the setW .





Define u j ∶ G j → SW by the rule u j(g j)(w) = [g j][w]. �e understanding is [ j] = ∅ ∈W , if  j ∈ G j is an
identity element. Note the following exercise is essentially a very special case of associativity inW .

Exercise  Show that [g jh j][w] = [g j]([h j][w]). Hence u j ∶ G j → SW is a group homomorphism.

Now define u ∶ W → SW by composing permutations, that is u(gi()gi()⋯gi(n)) = u(gi()) ○ u(gi()) ○
⋯○u(gi(n)).�en the following exercise is exactly the statement of the desired associativity of the product on
W , ([w][w])([w] = [w]([w][w]), but the proof just uses the definition of u, the definition of the product
inW , and Exercise , and avoids actually dealing with three general elements ofW .

Exercise  Show that u([w][w]) = u([w])u([w]).

OK, we now have a group structure on the set of reduced words ∗ jG j = W , and we have obvious group
homomorphisms s j ∶ G j → ∗ jG j, since an element of G j is a (short) word inW .

Exercise  Show that (∗ jG j , s j) is a categorical direct sum of the G j in the category of groups.

Free Groups and Free Objects

Suppose each G j ≅ Z, an infinite cyclic group. �e resulting free product is called a free group. Suppose X
is any set. For each x j ∈ X, let Z j = ⟨x j⟩ ≅ Z denote an infinite cyclic group with generator x j. A homo-
morphism s j ∶ Z j → H is the same data as an element h j ∈ H, since the element h j = s j(x j) determines the
homomorphism. �erefore, the free group F(X) = ∗ jZ j has the following universal property:

Let i ∶ X ⊂ F(X) denote the obvious inclusion of the given set of generators of the Z j into ∗ jZ j = F(X).
For any group H and any function f ∶ X → H, there exists a unique group homomorphism ϕ ∶ F(X) → H
such that ϕ ○ i = f .

Note there is a categorical similarity here with the concept of a basis of a vector space, or more generally a
basis X of a free module, F, over any ring. X is a subset of F so that every function f ∶ X → N , where N is any
module, extends to a unique module homomorphism ϕ ∶ F → N . �is universal property defines free objects
in any category in which the objects are sets and the morphisms are functions. If X is a set and i ∶ X → F
is a function, where F is an object in some such category, then (F , i) is the free object on the set X in the
category if for every function f ∶ X → N from a set X to an object N in the category, there exists a unique
morphism ϕ ∶ F → N in the category such that ϕ ○ i = f . Another familiar example is found in the category
of commutative rings with unit. �e free object on X is the polynomial ring Z[X], that is, polynomials on
symbols x j ∈ X.�e universal proof about uniqueness up to isomorphism of objects satisfying some universal
property shows that if a free object on X exists then it is unique up to isomorphism.

In the case of free groups, each non-identity element of F(X) has a unique expression xe()j() xe()j()⋯xe(n)j(n) ,
where the e( j) are non-zero integers and adjacent x js never coincide. �e multiplication is juxtaposition,
followed by combining powers of any resulting adjacent terms involving the same x j, and erasing identity
elements if they occur. �is perhaps seems somewhat more elementary and explicit than our previous con-
struction of the free product of an arbitrary family of groups, but one has the same technical difficulties with
associativity in this special case as one has in the general construction.

A rather remarkable theorem is that any subgroup of a free group is also a free group. But one can’t say
much about the number of generators. If n is a positive integer, or if n isℵ, then the free group on  generators
contains subgroups that are free on n generators. However, here is one result about the number of generators
of a free group.

Exercise  If F ≅ F′, where F and F′ are free groups on sets X and X′, respectively, then ∣X∣ = ∣X′∣. (If you are
stuck here, do Exercise  below first.)





Generators and Relations

If G is a group and R ⊂ G is a subset, what is the smallest normal subgroup N(R) ⊂ G which contains R?
�e answer is obviously this: N(R) is the set of all finite products of conjugates of elements of R and their
inverses. �ese products must be contained in any normal subgroup of G that contains R, and this set of
products is a normal subgroup of G. �e quotient projection p ∶ G → G/N(R) clearly has the following
universal property. If f ∶ G → H is a group homomorphism with R ⊂ ker f , then there exists a unique
homomorphism ϕ ∶ G/N(R)→ H such that f = ϕ ○ p ∶ G → G/N(R)→ H.

If X = {x j} is a set and R = {ri} ⊂ F(X) is a subset of the free group on generators X, that is, R is a set
of words, then the notation ⟨x j ∣ ri⟩ = F(X)/N(R) is used to denote the group “generated by set X subject
to relations R”. If f ∶ X → H is any function from X to a group H such that f (r j) =  ∈ H for all r j ∈ R, then
there exists a unique group homomorphism ϕ ∶ F(X)/N(R) → H “extending” f . �is universal property
characterizes ⟨x j ∣ ri⟩ up to isomorphism.

It is very difficult to determine, in fact, in complete generality impossible to determine, whether a group
presented with given generators and relations is a finite group or even a non-trivial group. It is also impossible
to determine in general whether twowords in F(X) become equal in F(X)/N(R). However, given an explicit
group G, such as a symmetric group or a semi-direct product group or a matrix group, it is o�en possible to
identify generators and relations which present G, that is, prove G ≅ ⟨x j ∣ ri⟩, for certain elements x j ∈ G
satisfying relations given by words ri .

Exercise  Show that ⟨x j ∣ x jx j′x−j x−j′ , for all j, j′⟩ is the free abelian group (i.e. direct sum of Zs) with basis
X = {x j}. Do this the right way, namely, by showing that the group in question is abelian and has the correct
universal property in the category of abelian groups.

Amalgamated Products

Suppose G and H are two groups and g ∶ K → G and h ∶ K → H are two homomorphisms from a third group
K to G and H, respectively. Define the amalgamated product G ∗K ,g ,h H to be the group (G ∗ H)/N(R),
where R = {g(x)h(x−) ∣ x ∈ K}. In other words, in the free product G ∗ H, impose relations which force
the two images of x ⊂ K to coincide.

Exercise  Show that G ∗K ,g ,h H, together with the two obvious homomorphisms u ∶ G → G ∗K ,g ,h H and
v ∶ H → G ∗K ,g ,h H, has the following universal property: For every group L and every pair of homomorphisms
p ∶ G → L and q ∶ H → L such that p○g = q○h ∶ K → L, there exists a unique homomorphism ϕ ∶ G∗K ,g ,hH → L
such that ϕ ○ u = p and ϕ ○ v = q.

Of course this exercise is trivial, you just quote two other universal properties. One could construct more
elaborate amalgamated products involving several ingredient groups and homomorphisms. But this basic
amalgamated product occurs very naturally in topology, providing a computation of the fundamental group
of certain unions of two topological spaces, in terms of the fundamental groups of the separate spaces and
their intersection. It is useful to not be intimidated by the algebraic details underlying the construction of
this group.




