
Finitely Generated Modules over a PID, I

Awill throughout be a fixed PID. We will develop the structure theory for finitely generated A-modules.

Lemma  Any submodule of a free A-module is itself free. ◻

Lemma  A torsion-free, finitely generated A-module is isomorphic to a submodule of a free module, hence is
free. ◻

Lemma  If M is a finitely generated A-module and T ⊂ M is its torsion submodule, then M/T = F is a finitely
generated torsion-free, hence free, A-module and one has a direct sum decomposition M ≅ T ⊕ F. Moreover, T
is a finitely generated A-module. ◻

We now need to analyze a finitely generated, torsion A-module, T . If x ∈ T , let ord(x) = {a ∈ A ∣ ax =
}. By definition of torsion module, ord(x) is a non-zero ideal of A, and in our case a principal ideal. Let
ann(T) = {a ∈ A ∣ ax = , for all x ∈ T}, also an ideal of A.

Lemma  If torsion A-module T is generated by {x, x, . . . , xs} and if ord(xi) = (ai), then ann(T) = (d) =
lcm(ai).

P Since ai ∣ d, clearly dxi = , for all i, hence d ∈ ann(T). Conversely, if e ∈ ann(T) then exi = ,
hence ai ∣ e and consequently d ∣ e. ∎

Lemma  Suppose T is a torsion A-module, x , y ∈ T. Let ord(x) = (p), ord(y) = (q), gcd(p, q) = . �en
ord(x + y) = pq.

P Certainly pq(x + y) = . If d(x + y) = , then dqx = , since dqy = . So p ∣ qd which implies p ∣ d.
Similarly, q ∣ d. ∎

Lemma  Suppose T is a torsion A-module, x , y ∈ T. Let ord(x) = (a), ord(y) = (b), lcm(a, b) = (d). If
⟨x , y⟩ denotes the submodule of T generated by x and y, then ⟨x , y⟩ = ⟨x′, y′⟩, where ord(x′) = (d).

P One can write d = pq, where a = pr, b = qs, and gcd(p, q) = gcd(r, s) = . Just take p and q to
be suitable products of powers of primes chosen according to the factorizations of a and b in A. �en, by
Lemma , x′ = rx + sy has ord(x′) = (d), since ord(rx) = (p) and ord(sy) = (q). Now write  = Rr − Ss ∈ A
and let y′ = Sx + Ry. �e matrix with rows (r, s) and (S , R) has determinant , so it is easy to solve for x and
y as linear combinations of x′ and y′. �us ⟨x , y⟩ = ⟨x′, y′⟩. ∎

Lemma  If torsion A-module T is generated by {x, x, . . . , xm} and if ann(T) = (d) as in Lemma , then
T = ⟨y, y, . . . , ym⟩, where ord(y) = (d).

P An easy iteration of Lemma . First replace ⟨x, x⟩ by ⟨x′ , x′⟩ as in Lemma . �en replace ⟨x′ , x⟩
by ⟨x′′ , x′⟩, so that now ord(x′′ ) = lcm(x, x, x). Continue. ∎

Lemma  Suppose T is a finitely generated torsion A module, y ∈ T, and ord(y) = ann(T) = (d). Let
T∗ = T/⟨y⟩, x∗ ∈ T∗, ord(x∗) = (e). �en there exist elements x ∈ T projecting to x∗ ∈ T∗, with ord(x) =
ord(x∗) = (e).





P First, e ∣ d, since dT = () implies dT∗ = (). Choose some element z ∈ T which projects to x∗ ∈ T∗.
�en ez ∈ ⟨y⟩, say ez = f y. Now,  = dz = (d/e)(ez) = (d f /e)y. Since ord(y) = (d), conclude e ∣ f . Let
x = z − ( f /e)y. �en x projects to x∗ and ex = ez − f y = , as desired. ∎

Lemma  If T is a finitely generated nonzero torsion A-module then T ≅ A/(d) ⊕ A/(d) ⊕ ⋯ ⊕ A/(dm),
where the di are neither  nor units in A and d ∣ d ∣ ⋯ ∣ dm− ∣ dm. Note that necessarily (dm) = ann(T) here.

P Induction based on Lemma . Say T = ⟨y, . . . , ym⟩, with m as small as possible and with ord(ym) =
(d) = ann(T). If m = , there is nothing to prove, T is cyclic. Otherwise, let T∗ = T/⟨ym⟩. Now, T∗ can
be generated by m −  elements (but no fewer than m − ). By induction, we can assume Lemma  holds for
T∗. Applying Lemma  to each cyclic generator in a direct sum decomposition for T∗ gives a splitting of the
exact sequence ()→ ⟨ym⟩→ T → T∗ → (), which establishes Lemma  for T . ∎

�eorem  If M is a finitely generated Amodule then

M ≅ F ⊕ T ≅ An ⊕ A/(d)⊕ A/(d)⊕⋯⊕ A/(dm)

where the di are neither  nor units in A and d ∣ d ∣ ⋯ ∣ dm− ∣ dm. Moreover, the rank n and the ideals (di)
with the indicated divisibility properties are uniquely determined by M. �e least number of generators of T is
m and the least number of generators of M is m + n.

(�e interpretation of n =  is that M = T is a torsion module, and the interpretation of m = , that is no
dis, is that M = F is a free module.)

P �e existence statement just collects the conclusions of Lemmas  and . �e rank, n, of F is invariant
since F ≅ M/T , which is independent of decomposition. Suppose p is a prime which divides d. �en
M/pM is a vector space over the field A/(p) of dimension n + m. �is proves n + m is independent of the
decomposition and also proves M cannot be generated by fewer than n + m elements. Similarly, T/pT has
dimension m as vector space over A/(p), so T cannot be generated by fewer than m elements.

�e uniqueness of the ideals (di) can be proved in different ways. Here is a nice characterization of (di).
For e ∈ A, the module eT can be generated by m − i elements if and only if di divides e. �us, di is the gcd
of all such elements e. �e idea is, multiply all the summands of one decomposition by e. You get something
isomorphic to another sum of cyclic modules

A/(e)⊕ A/(e)⊕⋯⊕ A/(em)

with ei ∣ ei+. Precisely, ei = di/ gcd(e , di). �e number of non-zero summands here is therefore the least
number of generators of eT . But a term disappears if and only if di divides e. Another proof of uniqueness
of the (di) can be based on�eorem  below, which presents an alternate version of the structure theorem.∎





Finitely Generated Modules over a PID, II

An alternate approach to the structure of a torsion module over a PID A uses first a decomposition into p-
primary summands, for primes p ∈ A, and then an analysis of a p-primary module. In general, if a ∈ A is a
nonzero element and T is a torsion A-module, set Ta = {x ∈ T ∣ anx = , for some n ≥ }. T is p-primary
for a prime p if T = Tp. Note Tp = Tq if q = ps.

Lemma  If gcd(a, b) = , then Ta ∩ Tb = ().

P If x ∈ Ta ∩ Tb and anx = bmx = , write  = uan + vbm ∈ A. �en x = x = (uan + vbm)x = . ∎

Lemma  If gcd(a, b) = , then Tab ≅ Ta ⊕ Tb. If a, b, c, . . . , k are finitely many pairwise relatively prime
elements of A, for example, powers of distinct primes, then Tab⋯k = Ta ⊕⋯⊕ Tk .

P A�er Lemma , we only need to show Tab = Ta + Tb. If (ab)nx = , then anx ∈ Tb and bnx ∈ Ta.
Write  = vbn + uan ∈ A. �en x = x = (vbn)x + (uan)x ∈ Ta + Tb. �e second statement is a simple
induction, starting with two elements, a and (bc⋯k). ∎

Remark  Lemma  can be viewed as a generalization of the Chinese Remainder �eorem in the case of
PIDs. Namely, if T = A/(ab), with gcd(a, b) = , then it is easy to see Ta ≅ A/(a) and Tb ≅ A/(b). For
example, the map “multiply by b,” A/(a)→ A/(ab) = T , is injective and has image equal to Ta. ◻

Lemma  For all torsion modules, T ≅ ⊕p primeTp.

P Any x ∈ T belongs to Td for some d, since T is a torsion module. Factor d into a product of distinct
prime powers. Lemma  shows Td is the direct sum of the Tp over the primes p which divide d. �is shows
every element of T is a finite sum of elements of the p-primarymodules Tp. Uniqueness of such an expression
is an easy consequence of Lemma . ∎

�eorem  If Tp is a finitely generated nonzero p-primary torsion module, then

Tp ≅ A/(pe)⊕ A/(pe)⊕⋯⊕ A/(pem),

where  < e ≤ e ≤ ⋯ ≤ em. �e exponents e j are uniquely determined by Tp. �e integer m is the least number
of generators of Tp.

P Follow the proof of Lemma  for the existence of such a decomposition. Given such a decomposition,
obviously m is the dimension of T/pT as vector space over A/(p), where we have abbreviated Tp by T .
Furthermore, the dimension of pT/pT over A/(p) is the number of e j which are greater than . In general,
the dimension of piT/pi+T is the number of e j which are greater than i. �ese dimensions are invariant,
and determine the e j, hence the e j are uniquely determined by Tp. ∎

Remark  �e reason for claiming that this is somehow an alternate proof of the structure theorem is that
Lemmas , , , and  are irrelevant or trivial for a p-primary module, since orders of elements of Tp are
always powers of p. �ose Lemmas are replaced by Lemmas , , and  here. �en one repeats Lemma ,
and its inductive consequence Lemma  for Tp. Also, the uniqueness part is more elementary here. ◻





�eorem  presents one normal form for a finitely generated torsion A-module T . �e ideals (d j) ⊂ A of
�eorem  that successively divide each other are called the invariant factors of T . Lemma  and�eorem
II present a second normal form for T . �e powers (pe j) which occur in the formula for Tp in �eorem ,
including the number of times each occurs, as p varies over prime divisors of ann(T) = (d), are called
elementary divisors of T .

It is quite easy to go back and forth between the invariant factor form and the elementary divisor form.
�us, one really wouldn’t need to give both proofs. However, the various Lemmas in the separate proofs have
some independent interest. Here is how the translation goes. Use the Chinese Remainder�eorem to convert
an invariant factor formula for T , as in�eorem , to elementary divisor form. �at is, if di = ∏ j p f i j

i j is the
factorization of di into distinct prime powers, then A/(di) ≅ ⊕ jA/(p f i j

i j ). Conversely, given the elementary
divisor form of �eorem  for each Tp, p prime, reconstruct the invariant factors di as follows. �e last
(dm) = ord(T)must be the product of all the highest prime powers seen in the elementary divisor formulas
for all the Tp. �en remove one cyclic summand of T corresponding to each of these highest prime powers,
and look at the remaining summands. Apply the same recipe to these summands to construct dm−. Namely,
dm− must be the product of the highest remaining prime powers. Continue this algorithm to find all the
di . Examining these two translations, recovering each normal form from the other, reveals that a uniqueness
result for either normal form implies uniqueness for the other normal form.�us, uniqueness of the invariant
factors follows from the rather clean proof of uniqueness of the elementary divisors.




