Elementary Explanation of Finite Field Mysteries

By "elementary," I mean using only basic group facts, like the order of an element divides the order of a group, and basic polynomial ring facts, like division algorithm, gcd's, and unique factorization for polynomials with coefficients in any field.

Fact 1 If $f(X) \in \mathbb{Z}/p\mathbb{Z}[X]$ is irreducible of degree *n*, then f(X) has *n* roots in the field $F = \mathbb{Z}/p\mathbb{Z}[X]/(f(X))$.

PROOF $|F| = q = p^n$, so the multiplicative group F^* has order $|F^*| = q - 1$. Let $x = X \mod f(X)$. Then $x^{q-1} = 1 \in F^*$. Since f(X) is the minimal polynomial for x, we have f(X) divides $X^{q-1} - 1 \mod \mathbb{Z}/p\mathbb{Z}[X]$ and in F[X]. But every element of F^* is a root of $X^{q-1} - 1$, so $X^{q-1} - 1 = \prod (X - a) \in F[X]$, where a ranges over all elements of F^* . Since f(X) divides this product, f(X) has n linear factors in F[X].

Fact 2 If $g(X) \in \mathbb{Z}/p\mathbb{Z}[X]$ is another irreducible polynomial of degree *n*, then g(X) has *n* roots in $F = \mathbb{Z}/p\mathbb{Z}[X]/(f(X))$.

PROOF The proof of Fact 1 shows that g(X) divides $X^{q-1} - 1$ in $\mathbb{Z}/p\mathbb{Z}[X]$ and hence in F[X]. But we already factored $X^{q-1} - 1$ in F[X], namely $X^{q-1} - 1 = \prod(X - a) \in F[X]$. So, g(X) is also a product of n linear factors in F[X].

Fact 3 The fields $F = \mathbb{Z}/p\mathbb{Z}[X]/(f(X))$ and $K = \mathbb{Z}/p\mathbb{Z}[X]/(g(X))$ are isomorphic.

PROOF By Fact 2, g(X) has a root $y \in F$. Thus, there is a copy of *K* in *F*. But both have vector space dimension *n* over $\mathbb{Z}/p\mathbb{Z}$, so K = F.

Regarding Statement 1, it is easy enough to make explicit the *n* roots of f(X) in $F = \mathbb{Z}/p\mathbb{Z}[X]/(f(X))$. Namely, the Frobenius $\sigma(a) = a^p$ is a field automorphism of *F* which fixes the coefficients of f(X), which are in $\mathbb{Z}/p\mathbb{Z}$. Thus $x, x^p, (x^p)^p, \ldots$ are all roots of f(X). A little Galois theory tells you there is no repetition here until *n* roots are obtained. That is, the first repetition is $x^q = x$, with $q = p^n$. In somewhat more elementary terms, since *x* generates *F* over $\mathbb{Z}/p\mathbb{Z}$, if you had $x^r = x$, with $r = p^d$, d < n, then you would have $a^r = a$, for all $a \in F$. This is too many roots for the polynomial $X^r - X$.