Elementary Explanation of Finite Field Mysteries

By "elementary," I mean using only basic group facts, like the order of an element divides the order of a group, and basic polynomial ring facts, like division algorithm, gcd's, and unique factorization for polynomials with coefficients in any field.

Fact 1 If $f(X) \in \mathbb{Z} / p \mathbb{Z}[X]$ is irreducible of degree n, then $f(X)$ has n roots in the field $F=\mathbb{Z} / p \mathbb{Z}[X] /(f(X))$.
Proof $|F|=q=p^{n}$, so the multiplicative group F^{*} has order $\left|F^{*}\right|=q-1$. Let $x=X \bmod f(X)$. Then $x^{q-1}=1 \in F^{*}$. Since $f(X)$ is the minimal polynomial for x, we have $f(X)$ divides $X^{q-1}-1$ in $\mathbb{Z} / p \mathbb{Z}[X]$ and in $F[X]$. But every element of F^{*} is a root of $X^{q-1}-1$, so $X^{q-1}-1=\Pi(X-a) \in F[X]$, where a ranges over all elements of F^{*}. Since $f(X)$ divides this product, $f(X)$ has n linear factors in $F[X]$.

Fact 2 If $g(X) \in \mathbb{Z} / p \mathbb{Z}[X]$ is another irreducible polynomial of degree n, then $g(X)$ has n roots in $F=$ $\mathbb{Z} / p \mathbb{Z}[X] /(f(X))$.

Proof The proof of Fact 1 shows that $g(X)$ divides $X^{q-1}-1$ in $\mathbb{Z} / p \mathbb{Z}[X]$ and hence in $F[X]$. But we already factored $X^{q-1}-1$ in $F[X]$, namely $X^{q-1}-1=\Pi(X-a) \in F[X]$. So, $g(X)$ is also a product of n linear factors in $F[X]$.

Fact 3 The fields $F=\mathbb{Z} / p \mathbb{Z}[X] /(f(X))$ and $K=\mathbb{Z} / p \mathbb{Z}[X] /(g(X))$ are isomorphic.
Proof By Fact $2, g(X)$ has a root $y \in F$. Thus, there is a copy of K in F. But both have vector space dimension n over $\mathbb{Z} / p \mathbb{Z}$, so $K=F$.

Regarding Statement 1 , it is easy enough to make explicit the n roots of $f(X)$ in $F=\mathbb{Z} / p \mathbb{Z}[X] /(f(X))$. Namely, the Frobenius $\sigma(a)=a^{p}$ is a field automorphism of F which fixes the coefficients of $f(X)$, which are in $\mathbb{Z} / p \mathbb{Z}$. Thus $x, x^{p},\left(x^{p}\right)^{p}, \ldots$ are all roots of $f(X)$. A little Galois theory tells you there is no repetition here until n roots are obtained. That is, the first repetition is $x^{q}=x$, with $q=p^{n}$. In somewhat more elementary terms, since x generates F over $\mathbb{Z} / p \mathbb{Z}$, if you had $x^{r}=x$, with $r=p^{d}, d<n$, then you would have $a^{r}=a$, for all $a \in F$. This is too many roots for the polynomial $X^{r}-X$.

