
Dedekind Domains

Definition  ADedekind domain is an integral domain that has the following three properties:
(i) Noetherian,
(ii) Integrally closed,
(iii) All non-zero prime ideals are maximal.

Example  Some important examples:
(a) A PID is a Dedekind domain.
(b) If A is a Dedekind domain with field of fractions K and if K ⊂ L is a finite separable field extension, then
the integral closure, B, of A in L is a Dedekind domain.

(c) A localization of a Dedekind domain at any multiplicative set is also a Dedekind domain.

Example (b) is the most important. It includes the ring of algebraic integers in any finite extension ofQ.
Proofs that all three examples above are Dedekind domains amount to collecting various known or straight-
forward results. For example, in (b), Noetherian follows from the trace form argument, which proves B is
contained in a finitely generated Amodule. �at all non-zero primes of B are maximal is part of the Going
Up theory, comparing prime ideals in B and A. B is integrally closed by transitivity of integral extensions.

�e firstmain result about Dedekind domains is that every proper ideal is uniquely a product of powers of
distinct prime ideals. One way to approach this is to start with primary decomposition. Properties (i) and (iii)
are enough to show that every proper ideal is uniquely a product of primary ideals with distinct radicals.�en
condition (ii) is brought in to show that the only primary ideals are powers of primes.�is is accomplished
by localizing at a prime and proving that any local Dedekind domain is a PID, in fact, a rather special kind of
PID. Anyway, in a PID the only primary ideals are powers of primes. Standard results comparing prime and
primary ideals before and a�er localization then gives what you want, namely that the only primary ideals in
a Dedekind domain are powers of primes.
In the end, one wants to factormore than the ideals in aDedekind domain A. One wants to study what are

called fractional ideals, which are A-submodules of the field of fractions K of A of the form (/c)I ⊂ K where
I ⊂ A is an ideal. We prove that these fractional ideals form a group under a product operation extending
the product operation on ideals, and we factor them as products of primes, with both positive and negative
exponents. A�er factoring ideals by the method outlined above, one more little argument is needed which
identifies the inverse of a prime ideal as a fractional ideal. A�er that, it is easy to factor fractional ideals and
show they form a group. All this becomes quite important in algebraic number theory.

�e classical approach to prime factorization and study of fractional ideals inDedekind domains proceeds
more directly than via primary decomposition. But one sees very similar steps along the way. Also, the
Noetherian hypothesis is used in similar ways. Recall for example that in a Noetherian ring any ideal contains
a finite product of powers of distinct prime ideals. If all non-zero primes are maximal, any prime containing
the ideal must occur in this product. So this is a start toward showing that an ideal is a product of powers of
the distinct primes that contain it. Use of primary decomposition places the study of Dedekind domains in
the context of a decomposition theory for ideals valid in arbitrary Noetherian rings.

�is handout is organized as follows. First, we give several preliminary paragraphs.�is is supposed to be
review.�e longest preliminary section discusses some standard facts about ideals and localization. If you’ve
never thought these things through, now is a good time, because you won’t fully understand otherwise. Basic
results about localization get used all the time. It is important to be familiar enough with the properties of
localization that you quickly understand how it gets used and helps in many situations you encounter. It’s like
linear algebra or basic group theory. You get so familiar with basic results that it doesn’t require any energy
to use those results whenever convenient and useful.





A�er the preliminaries, we prove the basic result that a local Dedekind domain is a PID. Combined
with the preliminaries, this immediately gives unique factorization of ideals as products of powers of distinct
primes in any Dedekind domain. �en a few trivial preliminaries about fractional ideals are given. Follow-
ing that, we identify the inverse of a fractional ideal in the Dedekind domain situation, and prove fractional
ideals form a group and satisfy unique factorization. Many rather simple, but somewhat dramatic, corollaries
follow. At the end, we present some really cool results about factoring ordinary integer prime ideals in rings
of algebraic integers in finite extensions ofQ.

Preliminary  Primary decomposition. If A is a Noetherian integral domain in which all non-zero prime
ideals are maximal, then every proper ideal I is uniquely a product of primary ideals, I = QQ⋯Qr , with
distinct radicals. �e radicals Pj = radQ j are exactly the prime ideals which contain I, all of which are
minimal over I, since there are no proper inclusions among non-zero prime ideals.�e primary components
are given by Q j = {a ∈ A ∣ as ∈ I for some s /∈ P j}. It is obvious from the definition of Pj-primary ideal
that Q j is thus the smallest Pj-primary ideal that contains I, since as ∈ I, s /∈ Pj, implies that a belongs to
any Pj-primary ideal that contains I. We summarize this discussion, with an added hypothesis, in the next
statement.

Prelim . Suppose A is a Noetherian domain in which all non-zero primes are maximal and suppose for
each prime P the only P-primary ideals are powers of P. �en every proper ideal I is uniquely the product
of powers of distinct prime ideals. If I ⊂ P, then the P-primary component of I is Pe , where e is the greatest
integer such that I ⊂ Pe .

�e powers Pn of a prime ideal in any Noetherian domain are distinct. To prove this, localize at P to
reduce to the case A local. �en PPn = Pn would imply Pn = () by Nakayama’s Lemma. (See the next
paragraphs for details about the behavior of primes and powers of primes under localization.)

Preliminary  Primary ideals and localization. Given any ring homomorphism i ∶ A→ B, there are two im-
portant operations on ideals, contraction c ∶ {ideals in B}→ {ideals in A} and extension e ∶ {ideals in A}→
{ideals in B}. Contraction is defined by Jc = i−(J) ⊂ A for an ideal J ⊂ B. Extension is defined by
Ie = i(I)B ⊂ B for an ideal I ⊂ A. If S ⊂ A is a multiplicative set and i ∶ A → S−A is the natural ho-
momorphism to the localization of A at S, then the following results are easily verified, although there are
many small details to check. (A few, but certainly not all, of the statements below hold for arbitrary ring
homomorphisms A→ B.)

Prelim . For any ideal J ⊂ S−A, Jce = J ⊂ S−A. If J is prime [resp. primary] then Jc is prime [resp.
primary]. For any J, rad(Jc) = (rad J)c .

Prelim . For any ideal I ⊂ A, Iec = {a ∈ A ∣ as ∈ I for some s ∈ S} ⊂ A. If I is prime [resp. primary] and
I ∩ S = ∅, then Ie is prime [resp. primary]. For any I, rad(Ie) = (rad I)e .

Prelim . Extension and contraction define bijections between the prime ideals of S−A and the prime ideals
of A disjoint from S. Extension and contraction define bijections between the primary ideals of S−A and the
primary ideals ofAdisjoint from S.�ese bijections commutewith the operation of taking radicals of primary
ideals.
For any ring homomorphismA→ B, it is obvious that extension commuteswith the operation of products

of ideals, that is (II)B = (IB)(IB), hence extension also commutes with the operation of nth powers of
an ideal.

Prelim . Suppose P ⊂ A is amaximal ideal such that in the localization A(P) the only PA(P)-primary ideals
are powers of PA(P).�en the only P-primary ideals of A are powers of P.





P Since P is maximal, the powers Pn are indeed P-primary. By the hypothesis, these powers extend
to give all the PA(P)-primary ideals in A(P). Because of the bijection of Prelim ., there can be no other
P-primary ideals in A. ∎

Preliminary  A module condition for integrality. Suppose A ⊂ B is a ring extension, and suppose b ∈ B.
Suppose there exists an A[b]-module M which is faithful as an A[b]-module and finitely generated as an
A-module. (Faithful means the A[b]-annihilator of M is ().) �en b is integral over A. Namely, if M is
generated by {x j} as A-module, write bxi = ∑ j ai jx j. By the adjugate matrix trick, det(bI−(ai j)) annihilates
M. Hence det(bI − (ai j)) = , which is a monic polynomial equation for b over A.

Preliminary  LocalNoetherian domainswith principalmaximal ideal. Call such a domainA, withmaximal
ideal (t).�en t is irreducible, since if t = rs, with r, s not units, then r, s ∈ (t), so we get an equation t = tx,
which implies  − tx = , contradicting the fact that t is not a unit in A. In fact, up to unit factors, t is clearly
the only irreducible (non-unit) in A, since any non-unit a = tu for some u, and if a is irreducible, u must
be a unit. Since A is a Noetherian domain, all non-zero, non-units are products of finitely many irreducible
elements, hence products of powers of t and units. We summarize:

Prelim . If A is a Noetherian local domain with principal maximal ideal (t), then every non-zero element
of A can be uniquely written a = tnu for some n ≥  and some unit u.�e only non-zero ideals in A are the
powers of the maximal ideal, that is, the principal ideals (tn). In particular A is a PID.

�e rings described in Prelim . are also called discrete valuation rings.�e function ν(a) = n, where
a = tnu, u a unit, has nice properties which makes it something called a valuation. But that’s another story.

�at finishes the first preliminaries. Now we come to the key result that implies unique factorization of
ideals in a Dedekind domain as products of powers of distinct primes.

Proposition  A local Dedekind domain is a discrete valuation ring, in particular a PID. �us, by Prelim .,
in any Dedekind domain the only primary ideals are powers of primes.

P If A is our local Dedekind domain, with maximal ideal P, choose (t) ⊂ P to be maximal among
proper principal ideals contained in P. We will show (t) = P. If not, choose r >  least such that Pr ⊂ (t).
Choose b ∈ Pr−, b /∈ (t).�en, in the field of fractions of A, b/t /∈ A. By the choice of b, we get (b/t)P ⊂ A
since bP ⊂ Pr ⊂ (t). Since (b/t)P ⊂ A is clearly now an ideal, either (b/t)P = A or (b/t)P ⊂ P.
Suppose (b/t)P = A.�en  = bx/t for some x ∈ P, which implies (t) ⊂ (x). By maximality of (t) ⊂ P,

we would have (t) = (x) hence x = ct and  = bc, contradicting the fact that b ∈ P cannot be a unit. But if
(b/t)P ⊂ P, then by Preliminary , b/t /∈ A is integral over A, contradicting the assumption that A is integrally
closed.�us (t) = P. ∎

Preliminary  Fractional ideals. Let A be a Noetherian domain with field of fractions K. By a fractional ideal
Γ ⊂ K we mean a non-zero A-submodule of K that satisfies any of the four equivalent conditions below. (It is
an easy to see that the conditions are equivalent via (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i).)
(i) cΓ ⊂ A for some c ∈ A, c ≠ . (Of course cΓ is then a non-zero ideal in A.)
(ii) cΓ ⊂ A for some c ∈ K, c ≠ .
(iii) Γ ⊂ (/c)A for some c ∈ K.
(iv) Γ ⊂ K is a finitely generated A-submodule of K

Prelim . �e product Γ∆ of two fractional ideals is a fractional ideal, where the product means {∑i xi yi ∣
xi ∈ Γ, yi ∈ ∆}.





Prelim . If Γ is a fractional ideal then so is (A ∶ Γ) = {x ∈ K ∣ xΓ ⊂ A}.

For ., just multiply two appropriate c’s from condition (i). For ., just take c to be any non-zero element
of Γ.

Of course all ideals ofA are fractional ideals.�e unit idealA itself acts as a unit for the product operation,
AΓ = Γ.�e notion of fractional ideal is especially important if A is a Dedekind domain.

Proposition  If A is a Dedekind domain then all fractional ideals are invertible. In fact,

Γ(A ∶ Γ) = A.

P Wewill first prove P(A ∶ P) = A for a non-zero prime ideal P ⊂ A. To begin, we show (A ∶ P) properly
containsA. Pick any non-zero element a ∈ P, and find primes (not necessarily distinct) with P⋯Pr ⊂ (a) ⊂ P.
�en P must occur among the Pj. We assume r is least. Of course, if (a) = P then /a ∈ (A ∶ P) and we are
done. Otherwise, say P = P and choose b ∈ P⋯Pr but b /∈ (a). �en r = b/a /∈ A. However, bP ⊂ (a), so
(b/a)P ⊂ A and b/a ∈ (A ∶ P), as desired.
Now, P(A ∶ P) is clearly an ideal of A containing P. Since P is maximal, either P(A ∶ P) = P or P(A ∶ P) =

A. But we just produced r /∈ Awith r ∈ (A ∶ P).�en rP ⊂ P would imply r integral over A by Preliminary .
�is contradicts A integrally closed.�erefore, we have established P(A ∶ P) = A.
Next, we observe any ideal I = PP⋯Ps is invertible. Namely, pick off one prime at a time by multiplying

I by the product (A ∶ Ps)⋯(A ∶ P) = ∆. It now also follows that ∆ = (A ∶ I), because ∆I = A immediately
gives ∆ ⊂ (A ∶ I) and multiplying the inclusion I(A ∶ I) ⊂ A by ∆ gives (A ∶ I) ⊂ ∆.
Finally, if Γ is any fractional ideal, we have (c)Γ = I ⊂ A, an ideal, for some c ∈ A. �us, Γ = (A ∶ (c))I

and Γ− = (c)(A ∶ I), which is quickly identified with (A ∶ Γ). ∎

Corollary  Every fractional ideal Γ is uniquely expressible as a product ∏i P f i
i taken over all primes in A,

where the fi are integers with only finitely many non-zero. �e set of fractional ideals forms a group under
multiplication, and this group is isomorphic to a free abelian group with generators corresponding to the prime
ideals.

P Existence of a factorization comes from Γ = (c)−I ⊂ A, c ∈ A, along with factorizations of I and (c)
as products of positive powers of primes. For uniqueness, just multiply two factorizations by enough positive
powers of finitely many primes to get two factorizations of an ideal in A. But we know ideals have unique
factorizations. Also, we’ve proved Γ(A ∶ Γ) = A, so inverses exist. Associativity of the product operation on
fractional ideals is trivial. ∎

Before continuing with the main development of ideas, we prove here that every fractional ideal is a pro-
jective A-module. It obviously suffices to consider ideals, because as modules fractional ideals are isomorphic
to ideals.

Corollary  If I ⊂ A is an ideal then I is a direct summand of a free module An, some n. Hence all ideals are
projective A modules.

P Since A = I(A ∶ I), write  = ∑i xi yi with xi ∈ I and yi ∈ (A ∶ I). Define p ∶ An → I by p(a, . . . , an) =
∑i xiai . If z ∈ I, define s(z) = (yz, . . . , ynz) ∈ An. �en ps(z) = z, so p is surjective and s splits an exact
sequence → N → An → I → . ∎

Corollary  ∆ =∏i Pe i
i ⊂∏i P f i

i = Γ if and only if ei ≥ fi , all i.





P Just multiply by Γ−. We know a fractional ideal is an ideal, that is, contained in A, if and only if all
exponents are non-negative. ∎

Given a prime P, define νP(Γ) = e if Pe is the power of P occurring in the factorization of Γ. For a
non-zero element r ∈ K, define νP(r) = νP((r)).
Corollary  For finitely many given primes Pi and integers ei , there exist elements r ∈ K with νPi(r) = ei .

P We will choose r = a/b, where a, b ∈ A, so that a takes care of the ei ≥  and b takes care of e j < .
Choose ti ∈ Pi − Pi . By the Chinese Remainder�eorem, choose a ∈ A so that a ≡ te ii mod Pe i+

i for the
ei ≥  and so that a ≡  mod Pj for the e j < . Similarly choose b ∈ A so that νPj(b) = ∣e j∣ for those e j <  and
νPi(b) =  for those ei ≥ .�en r = a/b works. ∎

Corollary  A Dedekind Domain with only finitely many prime ideals is a PID.

P Call the primes Pi . Given an ideal I, choose a ∈ Awith νPi(a) = νPi(I).�en (a) = I since these two
ideals have the same factorization. ∎

Note that the sum ∆ + Γ and intersection ∆ ∩ Γ of fractional ideals is a fractional ideal. Clearly sum is an
analogue of greatest common divisor and intersection is an analogue of least common multiple. �e sum is
the smallest fractional ideal containing both ∆ and Γ.�e intersection is the largest fractional ideal contained
in both ∆ and Γ.

Corollary  If ∆ =∏i Pe i
i and Γ =∏i P f i

i then ∆ + Γ =∏i Pmin{e i , f i}i and ∆ ∩ Γ =∏i Pmax{e i , f i}i .

P Just use the inclusion criterion three Corollaries above, along with the characterization of the sum
and intersection as smallest and largest fractional ideals with certain properties. ∎

Corollary  Every fractional ideal, in particular every ideal of A, can be generated by two elements.

P Multiply by an element of A to reduce to the case of an ideal I. Write I = ∏i P f i
i as a finite product

and choose a ∈ Awith νPi(a) = f i. Nowwrite (a) = I∏i Qe i
i , also a finite product, where theQi are different

from all Pi . Choose b ∈ Awith νPi(b) = fi +  and νQ i(b) = .�en I = (a) + (b). ∎

Remark  Combined with the proof above that all ideals are projective A-modules, we see this last result
implies every ideal is a direct summand of A. ◻

For later use, we record one more observation.

Corollary  If Q is a prime ideal in a Dedekind domain B, then Q i/Q i+ is a one-dimensional vector space
over B/Q.

P Take x ∈ Q i − Q i+.�en Q i = (x) + Q i+ since these ideals have the same factorization. ∎

One can prove this last important result by more direct methods, just using the theorem that the local
Dedekind domain B(Q) is a PID, which was the starting point for the factorization theory. Namely, choose
t ∈ Q − Q, so (t)B(Q) = QB(Q).�en if z ∈ Q i , we get z = t i y/s ∈ B(Q) for some s /∈ Q. Since (s) and Q i+

are comaximal ideals in B, we can write  = as + b, with b ∈ Q i+. �en z = azs + bz = at i y + bz. Hence
Q i = (t i) + Q i+.
We now take A = Z, the integers, with field of fractionsQ, the rationals, and we take B to be the integral

closure of Z in a finite extension E ofQ. We investigate how prime ideals (p) ⊂ Z factor in B.
Write pB = ∏d

i= Qe i
i , a finite product of distinct prime powers. By the Chinese Remainder�eorem,

B/pB =∏i B/Qe i
i as rings. We can also regard both sides of this equation as Z/(p) vector spaces, hence they

have the same dimension as Z/(p) vector spaces. Note that pB ⊂ Qe i
i , so B/Qe i

i is indeed a Z/(p) vector
space.





Proposition  Let n = ∣E ∶ Q∣ be the degree of E over the rational numbers. Let fi = ∣B/Qi ∶ Z/(p)∣, where
pB =∏d

i= Qe i
i . �en n = ∑d

i= ei fi .

P We know that additively B ≅ Zn, so B/pB has dimension n as a Z/(p)-vector space. We show that
each B/Qe i

i has dimension ei fi as a Z/(p)-vector space.�e Proposition follows since B/pB = ∏i B/Qe i
i as

rings.
Study B/Qe by exploiting the filtration B/Qe ⊃ Q/Qe ⊃ Q/Qe ⊃ ⋯ ⊃ Qe/Qe = ().
Each successive quotient (Q j/Qe)/(Q j+/Qe) = Q j/Q j+ is a one-dimensional vector space over B/Q,

hence has dimension f = ∣B/Q ∶ Z/(p)∣ over Z/(p).�erefore B/Qe has dimension e f over Z/(p) and the
Proposition is proved. ∎

Proposition  Suppose Q ⊂ E is a finite Galois extension, p ∈ Z prime. �en pB = ∏d
i= Qe

i , that is, all prime
power exponents are the same. Moreover, n = de f , where d is the number of distinct primes in B lying over (p),
f = ∣B/Q ∶ Z/(p)∣ for any such prime Q, and e is the common exponent of all prime factors.

P We know the Galois group G = Gal(E/Q) acts transitively on the primes above (p).�us if we write
pB =∏d

i= Qe i
i and apply Galois automorphisms, we conclude all ei must be the same by unique factorization

of the ideal pB. Also, all the fields B/Qi are isomorphic, so all the fi must be the same.�us n = ∑d
i= ei fi =

de f . ∎

Remark  Recall that if Q is one prime in B over (p) then we have the decomposition group GZ = GZ(Q) ⊂
G, consisting of automorphisms σ with σ(Q) = Q. �us d = ∣G ∶ GZ ∣. Also, we have a surjection GZ →
Gal(B/Q ∶ Z/(p)), where this last group has order f = ∣B/Q ∶ Z/(p)∣. �e inertia group of Q is defined
to be GT = GT(Q) = ker(GZ → Gal(B/Q ∶ Z/(p))). From G ⊃ GZ ⊃ GT ⊃ {}, we see d = ∣G ∶ GZ ∣,
f = ∣GZ ∶ GT ∣, and, necessarily e = ∣GT ∣, since n = de f = ∣G∣. ◻

Remark  �ere is a useful uniqueness observation about the decomposition B/pB = ∏i B/Qe i
i as rings.

Each factor B/Qe i
i has a single prime ideal, hence cannot be further decomposed as a direct product of rings.

Anytime a ring can be written as a finite direct product of other rings that are indecomposable, then the
decomposition is unique in the sense that two such decompositions will have the same number of factors,
which match up isomorphically in pairs. �e proof is easy, in fact there is an easy more general uniqueness
statement about decomposingmodules over a direct product ring. In the case of a factor like B/Qe , the integer
e is uniquely characterized as the smallest power of the prime ideal which is (). ◻

Example  Consider a quadratic extensionQ[
√
d], where d is a square-free integer.�en r+ s

√
d with s ≠ 

is integral over Z if and only if the trace r, and the norm r − ds are integers. (Trace and norm are the
coefficients of the minimal polynomial.) It follows rather quickly that if d ≡ , (mod) then the ring of
algebraic integers inQ[

√
d] is B = Z[

√
d]. If d ≡ (mod) then B = Z[( +

√
d)/]. Note b = ( +

√
d)/ is

a root of the quadratic equation x − x − (d − )/.
Let’s determine how the ideals B and B factor in the ring B of integers in Q[

√
] and Q[

√
]. First

in the case
√
, B = Z[b], where b is a root of x − x − . �erefore, B/B ≅ Z/()[x]/(x − x − ), which

is a quadratic extension field of Z/(). �us, B = Q is a prime ideal in B. In the n = de f formula, d = ,
f =  and e = . Continuing, B/B ≅ Z/()[x]/(x − x − ) = Z/()[x]/(x − x) = Z/() × Z/(). �us,
B = QQ is a product of two primes in B. In the n = de f formula, d = , f = , and e = .
Next, we have B = Z[

√
] ⊂ Q[

√
].�us B/B ≅ Z/()[x]/(x − ) = Z/()[x]/(x − ). Lying over

the prime  in B is a single prime Q. We have B = Q. In the n = de f formula, d = , f = , and e = .
Finally, B/B ≅ Z/()[x]/(x − ) = Z/()[x]/(x + ), a quadratic extension of Z/(). �us B = Q is
prime. In the n = de f formula, d = , f = , and e = . ◻





�e method above ‘works’ whenever B = Z[α]. If f (x) ∈ Z[x] is the minimal monic polynomial of α
then B/pB ≅ Z/(p)[x]/( f (x)), and the structure of this ring is obtained by factoring f (x)mod p. However,
not all rings of integers in number fields can be expressed in the form Z[α], and even when this is possible
it may be difficult to establish. Further examples of the form B = Z[α] are Z[ 

√
] and Z[ζp] where ζp is a

primitive pth root of unity, p prime. �at these are all the integers in the corresponding extensions of Q is
not easy, but can be shown with enough trace and norm calculations.
As further examples of prime factorizations, Z[ 

√
] = Q, since x −  = (x + ) mod , and Z[ 

√
] =

QQ, since x −  = (x − )(x + x − ) mod . Here,Q[ 
√
] is not normal overQ, and in the last example

we get n =  = e f + e f =  + . Continuing, Z[ζ] = QQQQ and Z[ζ] = QQ, reflecting the facts
that all th roots of unity are inZ/() and that the th roots of unity are first found in the degree  extension
of Z/().
In the examples above when pB = pZ[α] is not prime, it is easy to find generators of the various primes

above (p) inZ[α]. If f (x) is theminimal polynomial for α then for each irreducible factor f j(x) of f (x) mod
p, Q j = (p, f j(α)) will generate one of the primes of B above (p). �is is pretty clear from the formula
B/pB ≅ Z/(p)[x]/( f (x)), because then B/Q j ≅ Z/(p)[x]/( f (x), f j(x)) = Z/(p)[x]/( f j(x)), which is a
field.
Since all non-zero primes in a Dedekind domain B are minimal non-zero primes, it is clear that if B is

a UFD then all primes and hence all ideals are principal. �us UFD and PID are equivalent for Dedekind
domains. It is generally difficult to determine if a given B is a PID. If B is the ring of integers in a number
field, then an element of B is a unit if and only if its norm is + or − in Z. Here is an example of how norms
can sometimes be used to show an ideal can’t be principal. With B = Z[

√
−], we get B = QQ, where, say,

Q = (,  −
√
−). Now N() =  = , and N( −

√
−) = ( −

√
−)( +

√
−) = . If Q = (z), then

necessarily N(z) = + or −, since both  and  must be multiples of N(z), and N(z) can’t be + or −. But
N(a + b

√
−) = a + b, so clearly neither + nor − can be norms. Another view of this same argument is

to note the two factorizations  =  ⋅  = ( −
√
−) ⋅ ( +

√
−). Since  and  are not norms, all four factors

must be irreducible.�erefore Z[
√
−] is not a UFD.

For a final example, we start with a different ground ring, the polynomial ring A = Q[x]. �e inte-
gral closure of A in a finite field extension Q(x)[y]/( f (x , y)) of Q(x) will be a Dedekind domain B. Here
f (x , y) ∈ Q[x , y] is an irreducible polynomial in which y occurs. Consider specifically f (x , y) = y−x+. It
can be shown that B = Q[x , y]/( f (x , y)) is an integrally closed domain. [See the handout on Plane Algebraic
Curves.] �erefore B is the integral closure of Q[x] in the field Q(x)[y]/( f (x , y)) . We find factorizations
xB = QQ, (x−)B = Q, and (x−)B = Q is prime. Namely, B/xB ≅ Q[x , y]/(x , f (x , y)) = Q[y]/(y+),
which is a product of two fields. Similarly, B/(x − )B ≅ Q[y]/(y) and B/(x − )B ≅ Q[y]/(y − ).
Replace f (x , y) by g(x , y) = y−x−, and you find in the corresponding integral closure that (x+)B =

QQQ. Namely, B/(x + )B ≅ Q[x , y]/(x + , g(x , y)) = Q[
√
−][y]/(y + ), which is a product of

three fields, each isomorphic to A/P = Q[x]/(x + ) = Q[
√
−].




