Solving the Cubic

Let $f(x)=x^{3}-a x^{2}+b x-c$ be an irreducible cubic in $F[x]$. Assume char $F \neq 2$ or 3 . The Galois group is either S_{3} or A_{3}. Setting $g(x)=f(x+a / 3)$, note $g(x)=x^{3}+p x-q$. Roots r, s, t of $g(x)$ are obtained by subtracting $a / 3$ from roots of $f(x)$, so they have the same splitting field. Also, the discriminants of $f(x)$ and $g(x)$ are the same, where the discriminant, D, is given by $D=(r-s)^{2}(s-t)^{2}(t-r)^{2}$ with $\sqrt{D}=d=$ $(r-s)(s-t)(t-r)=r^{2} t+t^{2} s+s^{2} r-r^{2} s-s^{2} t-t^{2} r$.

Now D is invariant under S_{3} hence must be in the ground field F. However d changes sign under a transposition of two roots. As a corollary, the Galois group of $f(x)$ is A_{3} if and only if D is a square in F.

We show that $D=-4 p^{3}-27 q^{2}$. There are various clever proofs of this formula, see Lang for one, but a not so clever proof is just to expand D, write D in terms of the elementary symmetric functions in r, s, t, and use $r+s+t=0, r s+s t+t r=p$, and $r s t=q$.

Now let ζ denote a primitive cube root of 1 . We have the Lagrange resolvants, whose cubes are in F :

$$
u=r+s+t=0, \quad v=r+\zeta s+\zeta^{2} t, \quad w=r+\zeta^{2} s+\zeta t
$$

Note $3 r=u+v+w=v+w$, since $1+\zeta+\zeta^{2}=0$. Also, a computation gives $v w=-3 p$. We thus have a formula for the root r of $g(x)$ once we find v^{3} and w^{3}. Computation gives:

$$
\begin{aligned}
v^{3} & =r^{3}+s^{3}+t^{3}+6 r s t+3 \zeta\left(r^{2} s+s^{2} t+t^{2} r\right)+3 \zeta^{2}\left(r^{2} t+t^{2} s+s^{2} r\right), \\
w^{3} & =r^{3}+s^{3}+t^{3}+6 r s t+3 \zeta^{2}\left(r^{2} s+s^{2} t+t^{2} r\right)+3 \zeta\left(r^{2} t+t^{2} s+s^{2} r\right) .
\end{aligned}
$$

Taking $\zeta=(-1+\sqrt{-3}) / 2$ and $\zeta^{2}=(-1-\sqrt{-3}) / 2$ and using the above 'symmetric' formula for $d=\sqrt{D}$, we get

$$
v^{3}+w^{3}=27 q \text { and } v^{3}-w^{3}=(-3 \sqrt{-3}) \sqrt{D},
$$

where the first simplification results from $r+s+t=0$ used a few times. Solving and using the above explicit formula for D :

$$
\begin{aligned}
& v^{3}=\frac{27 q-(3 \sqrt{-3}) \sqrt{D}}{2}=\frac{27 q-(3 \sqrt{-3}) \sqrt{-4 p^{3}-27 q^{2}}}{2}, \\
& w^{3}=\frac{27 q+(3 \sqrt{-3}) \sqrt{D}}{2}=\frac{27 q+(3 \sqrt{-3}) \sqrt{-4 p^{3}-27 q^{2}}}{2}
\end{aligned}
$$

$r=v+w$ gives a formula for one root of $g(x)$ as $1 / 3$ the sum of two cube roots of elements of $F[\sqrt{D}]$. This is Cardan's formula, as derived by Lagrange. The cube roots v and w are not independent since $v w=-3 p$. One gets the other two conjugates s and t of r by reinterpreting the cube roots v, w, keeping the product $v w=-3 p$:

$$
3 r=v+w, \quad 3 s=\zeta v+\zeta^{2} w, \quad 3 t=\zeta^{2} v+\zeta w
$$

Solving the quartic is harder. The composition series for S_{4} is $S_{4}>A_{4}>V_{4}>C_{2}>1$. The Galois group is reduced to A_{4} by adjoining the square root of the discriminant, which is not a pretty sight for a quartic. If the four roots are r, s, t, u then the element $r s+t u$ is invariant under $V_{4}=\{1,(r s)(t u),(r t)(s u),(r u)(s t)\}$. Its conjugates under A_{4} are $r s+t u, r t+s u$, and $r u+s t$. These three elements are roots of a cubic over $F[\sqrt{D}]$, which can be computed explicitly and solved with the Cardan formulas. This gives the fixed field of V_{4}. If $C_{2}=\{1,(r s)(t u)\}$ then elements $r s$ and $r+s$ are in the fixed field of C_{2}. Their V_{4} conjugates are $t u$ and $t+u$, respectively, and one can find all these elements by solving quadratic equations over the fixed field of V_{4}. This gives the fixed field of C_{2}. Finally, one finds r, s, t, u by solving quadratic equations over the fixed field of C_{2}. There are some books that carry all this out explicitly.

